1887

Abstract

, an intracellular bacterium, is associated with respiratory diseases, reinfectivity and chronic diseases such as cardiovascular disease, hypertension and stroke. The risk of infection is higher and infections are a serious clinical problem in patients with type 1 (insulin-dependent) diabetes mellitus (T1DM). Although diabetes mellitus and hyperglycaemia are considered possible risk factors for various types of aetiological agents, the epidemiological evidence concerning infection is scanty. The aim of the present study was to evaluate the impact of glycosylated haemoglobin (HbA1c) levels, an indicator of a hyperglycaemic state, on infection and disease chronicity; in addition we compared the duration of diabetes with the occurrence of infection. blood real time PCR and serology (IgG, IgA and IgM) assays by an ELISA method were performed. DNA was detected in 46.5 % [95 % confidence interval (CI) = 35.1–57.9 %] of the patients with T1DM; this prevalence is higher (<0.05) than in non-diabetic paediatric controls, 10.5 % (95 % CI = 3.6–17.4 %). IgG/IgA antibody positivity was significantly (≤0.05) more common in patients in poor metabolic control (HbA1c >9 %) versus patients in good metabolic control (HbA1c <7 %), suggesting that the metabolic control of the disease is compromised in the patients with T1DM. In conclusion, adolescents with T1DM were more likely to show signs of infection with compared with healthy adolescents and the results suggest an increased risk of progressing from an acute infection to a chronic form.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.048512-0
2012-11-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/11/1584.html?itemId=/content/journal/jmm/10.1099/jmm.0.048512-0&mimeType=html&fmt=ahah

References

  1. Akerblom H. K. , Knip M. . ( 1998; ). Putative environmental factors in Type 1 diabetes. . Diabetes Metab Rev 14:, 31–68. [CrossRef] [PubMed]
    [Google Scholar]
  2. Akerblom H. K. , Vaarala O. , Hyöty H. , Ilonen J. , Knip M. . ( 2002; ). Environmental factors in the etiology of type 1 diabetes. . Am J Med Genet 115:, 18–29. [CrossRef] [PubMed]
    [Google Scholar]
  3. American Diabetes Association Standards of medical care in diabetes. ( 2008; ). Diabetes Care. 31 S, 12–54.
  4. Bulut Y. , Faure E. , Thomas L. , Karahashi H. , Michelsen K. S. , Equils O. , Morrison S. G. , Morrison R. P. , Arditi M. . ( 2002; ). Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. . J Immunol 168:, 1435–1440.[PubMed] [CrossRef]
    [Google Scholar]
  5. Campbell L. A. , Kuo C. C. . ( 2004; ). Chlamydia pneumoniae – an infectious risk factor for atherosclerosis?. Nat Rev Microbiol 2:, 23–32. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carratelli C. R. , Rizzo A. , Paolillo R. , Catania M. R. , Catalanotti P. , Rossano F. . ( 2005; ). Effect of nitric oxide on the growth of Chlamydophila pneumoniae . . Can J Microbiol 51:, 941–947. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen J. C. , Stephens R. S. . ( 1997; ). Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. . Microb Pathog 22:, 23–30. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen J. J. , Zhu Z. , Gershon A. A. , Gershon M. D. . ( 2004; ). Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. . Cell 119:, 915–926. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cook P. J. , Lip G. Y. , Davies P. , Beevers D. G. , Wise R. , Honeybourne D. . ( 1998; ). Chlamydia pneumoniae antibodies in severe essential hypertension. . Hypertension 31:, 589–594. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dahlquist G. . ( 1995; ). Environmental risk factors in human type 1 diabetes – an epidemiological perspective. . Diabetes Metab Rev 11:, 37–46. [CrossRef] [PubMed]
    [Google Scholar]
  11. Daneman D. . ( 2006; ). Type 1 diabetes. . Lancet 367:, 847–858. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dowell S. F. , Peeling R. W. , Boman J. , Carlone G. M. , Fields B. S. , Guarner J. , Hammerschlag M. R. , Jackson L. A. , Kuo C. C. . & other authors ( 2001; ). Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). . Clin Infect Dis 33:, 492–503. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fagerberg B. , Gnarpe J. , Gnarpe H. , Agewall S. , Wikstrand J. . ( 1999; ). Chlamydia pneumoniae but not cytomegalovirus antibodies are associated with future risk of stroke and cardiovascular disease: a prospective study in middle-aged to elderly men with treated hypertension. . Stroke 30:, 299–305. [CrossRef] [PubMed]
    [Google Scholar]
  14. Feigin R. D. , Shearer W. T. . ( 1975; ). Opportunistic infection in children. II. In the compromised host. . J Pediatr 87:, 677–694. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fukano H. . ( 2004; ). Comparison of five PCR assays for detecting Chlamydophila pneumoniae DNA. . Microbiol Immunol 48:, 441–448.[PubMed] [CrossRef]
    [Google Scholar]
  16. Hadley C. . ( 2006; ). The infection connection. Helicobacter pylori is more than just the cause of gastric ulcers – it offers an unprecedented opportunity to study changes in human microecology and the nature of chronic disease. . EMBO Rep 7:, 470–473. [CrossRef] [PubMed]
    [Google Scholar]
  17. Halme S. , Latvala J. , Karttunen R. , Palatsi I. , Saikku P. , Surcel H. M. . ( 2000; ). Cell-mediated immune response during primary Chlamydia pneumoniae infection. . Infect Immun 68:, 7156–7158. [CrossRef] [PubMed]
    [Google Scholar]
  18. Iliescu E. A. , Fiebig M. F. , Morton A. R. , Sankar-Mistry P. . ( 2000; ). Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in peritoneal dialysis patients. . Perit Dial Int 20:, 722–726.[PubMed]
    [Google Scholar]
  19. Jha H. C. , Srivastava P. , Divya A. , Prasad J. , Mittal A. . ( 2009; ). Prevalence of Chlamydophila pneumoniae is higher in aorta and coronary artery than in carotid artery of coronary artery disease patients. . APMIS 117:, 905–911. [CrossRef] [PubMed]
    [Google Scholar]
  20. Johnson R. A. . ( 2000; ). The immune compromised host in the twenty-first century: management of mucocutaneous infections. . Semin Cutan Med Surg 19:, 19–61. [CrossRef] [PubMed]
    [Google Scholar]
  21. Joshi N. , Caputo G. M. , Weitekamp M. R. , Karchmer A. W. . ( 1999; ). Infections in patients with diabetes mellitus. . N Engl J Med 341:, 1906–1912. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kanauchi M. , Kawano T. , Dohi K. . ( 2000; ). Association of Chlamydia pneumoniae infection with diabetic nephropathy. . Diabetes Res Clin Pract 47:, 45–48. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kaukoranta-Tolvanen S.S. , Teppo A.M. , Leinonen M. , Saikku P. , Laitinen K. . ( 1992; ). Chlamydia pneumoniae induces the production of TNF-α, IL-1β, and IL-6 by human monocytes. . Proc Eur Soc Chlamydia Res, 2–85.
    [Google Scholar]
  24. Kaul R. , Uphoff J. , Wiedeman J. , Yadlapalli S. , Wenman W. M. . ( 2000; ). Detection of Chlamydia pneumoniae DNA in CD3+ lymphocytes from healthy blood donors and patients with coronary artery disease. . Circulation 102:, 2341–2346. [CrossRef] [PubMed]
    [Google Scholar]
  25. Knip M. , Veijola R. , Virtanen S. M. , Hyöty H. , Vaarala O. , Akerblom H. K. . ( 2005; ). Environmental triggers and determinants of type 1 diabetes. . Diabetes 54: (Suppl. 2), S125–S136. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kuo C. C. , Grayston J. T. , Cambell L. A. , Goo Y. A. , Wissler R. W. , Benditt E. P. . ( 1995; ). Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old). . Proc Natl Acad Sci U S A 92:, 6911–6914. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lin T. M. , Campbell L. A. , Rosenfeld M. E. , Kuo C. C. . ( 2000; ). Monocyte-endothelial cell coculture enhances infection of endothelial cells with Chlamydia pneumoniae . . J Infect Dis 181:, 1096–1100. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lin T. M. , Campbell L. A. , Rosenfeld M. E. , Kuo C. C. . ( 2001; ). Human monocyte-derived insulin-like growth factor-2 enhances the infection of human arterial endothelial cells by Chlamydia pneumoniae . . J Infect Dis 183:, 1368–1372. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lutsey P. L. , Pankow J. S. , Bertoni A. G. , Szklo M. , Folsom A. R. . ( 2009; ). Serological evidence of infections and type 2 diabetes: the multiethnic study of atherosclerosis. . Diabet Med 26:, 149–152. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mahony J. B. , Chong S. , Coombes B. K. , Smieja M. , Petrich A. . ( 2000; ). Analytical sensitivity, reproducibility of results, and clinical performance of five PCR assays for detecting Chlamydia pneumoniae DNA in peripheral blood mononuclear cells. . J Clin Microbiol 38:, 2622–2627.[PubMed]
    [Google Scholar]
  31. McNally R. J. , Feltbower R. G. , Parker L. , Bodansky H. J. , Campbell F. , McKinney P. A. . ( 2006; ). Space-time clustering analyses of type 1 diabetes among 0- to 29-year-olds in Yorkshire, UK. . Diabetologia 49:, 900–904. [CrossRef] [PubMed]
    [Google Scholar]
  32. Miyashita N. , Obase Y. , Fukuda M. , Shouji H. , Yoshida K. , Ouchi K. , Oka M. . ( 2007; ). Evaluation of the diagnostic usefulness of real-time PCR for detection of Chlamydophila pneumoniae in acute respiratory infections. . J Infect Chemother 13:, 183–187. [CrossRef] [PubMed]
    [Google Scholar]
  33. Muhlestein J. B. , Hammond E. H. , Carlquist J. F. , Radicke E. , Thomson M. J. , Karagounis L. A. , Woods M. L. , Anderson J. L. . ( 1996; ). Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. . J Am Coll Cardiol 27:, 1555–1561. [CrossRef] [PubMed]
    [Google Scholar]
  34. Müller J. , Møller D. S. , Kjaer M. , Nyvad O. , Larsen N. A. , Pedersen E. B. . ( 2003; ). Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in healthy control subjects and patients with diabetes mellitus, acute coronary syndrome, stroke, and arterial hypertension. . Scand J Infect Dis 35:, 704–712. [CrossRef] [PubMed]
    [Google Scholar]
  35. Murray L. J. , O’Reilly D. P. , Ong G. M. , O’Neill C. , Evans A. E. , Bamford K. B. . ( 1999; ). Chlamydia pneumoniae antibodies are associated with an atherogenic lipid profile. . Heart 81:, 239–244.[PubMed] [CrossRef]
    [Google Scholar]
  36. Orrett F. A. . ( 2000; ). Fatal Bacillus cereus bacteremia in a patient with diabetes. . J Natl Med Assoc 92:, 206–208.[PubMed]
    [Google Scholar]
  37. Pozzilli P. , Leslie R. D. . ( 1994; ). Infections and diabetes: mechanisms and prospects for prevention. . Diabet Med 11:, 935–941. [CrossRef] [PubMed]
    [Google Scholar]
  38. Rayfield E. J. , Ault M. J. , Keusch G. T. , Brothers M. J. , Nechemias C. , Smith H. . ( 1982; ). Infection and diabetes: the case for glucose control. . Am J Med 72:, 439–450. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rohlfing C. L. , Little R. R. , Wiedmeyer H. M. , England J. D. , Madsen R. , Harris M. I. , Flegal K. M. , Eberhardt M. S. , Goldstein D. E. . ( 2000; ). Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population. . Diabetes Care 23:, 187–191. [CrossRef] [PubMed]
    [Google Scholar]
  40. Roubalová K. , Broz J. , Hrubá D. , Hýblová M. , Kraml P. . ( 2007; ). Prevalence of active infection with Chlamydia pneumoniae and human cytomegalovirus in patients with type II diabetes mellitus. . Folia Microbiol (Praha) 52:, 287–290. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sechi L. A. , Rosu V. , Pacifico A. , Fadda G. , Ahmed N. , Zanetti S. . ( 2008; ). Humoral immune responses of type 1 diabetes patients to Mycobacterium avium subsp. paratuberculosis lend support to the infectious trigger hypothesis. . Clin Vaccine Immunol 15:, 320–326. [CrossRef] [PubMed]
    [Google Scholar]
  42. Toplak H. , Schnedl W. , Weber K. , Brunner G. , Reisinger E.C. . ( 1991; ). Diabetes Mellitus und Infektionen. . Folia Chemotherapeutica Austriaca 7:, 12–13.
    [Google Scholar]
  43. Toplak H. , Haller E. M. , Lauermann T. , Weber K. , Bahadori B. , Reisinger E. C. , Tilz G. P. , Wascher T. C. . ( 1996; ). Increased prevalence of IgA-Chlamydia antibodies in NIDDM patients. . Diabetes Res Clin Pract 32:, 97–101. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wang C. , Gao D. , Kaltenboeck B. . ( 2009; ). Acute Chlamydia pneumoniae reinfection accelerates the development of insulin resistance and diabetes in obese C57BL/6 mice. . J Infect Dis 200:, 279–287. [CrossRef] [PubMed]
    [Google Scholar]
  45. West S. K. , Kohlhepp S. J. , Jin R. , Gleaves C. A. , Stamm W. , Gilbert D. N. . ( 2009; ). Detection of circulating Chlamydophila pneumoniae in patients with coronary artery disease and healthy control subjects. . Clin Infect Dis 48:, 560–567. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wimmer M. L. , Sandmann-Strupp R. , Saikku P. , Haberl R. L. . ( 1996; ). Association of chlamydial infection with cerebrovascular disease. . Stroke 27:, 2207–2210. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wong Y. K. , Dawkins K. D. , Ward M. E. . ( 1999; ). Circulating Chlamydia pneumoniae DNA as a predictor of coronary artery disease. . J Am Coll Cardiol 34:, 1435–1439. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yamaguchi H. , Yamada M. , Uruma T. , Kanamori M. , Goto H. , Yamamoto Y. , Kamiya S. . ( 2004; ). Prevalence of viable Chlamydia pneumoniae in peripheral blood mononuclear cells of healthy blood donors. . Transfusion 44:, 1072–1078. [CrossRef] [PubMed]
    [Google Scholar]
  49. Yamaguchi H. , Oshio I. , Osaki T. , Kurata S. , Yamamoto Y. , Kamiya S. . ( 2006; ). Development of diabetes in non-obese diabetic mice promotes Chlamydia pneumoniae dissemination from lung to peripheral blood. . Int J Exp Pathol 87:, 121–129. [CrossRef] [PubMed]
    [Google Scholar]
  50. Yi H. K. , Hwang P. H. , Yang D. H. , Kang C. W. , Lee D. Y. . ( 2001; ). Expression of the insulin-like growth factors (IGFs) and the IGF-binding proteins (IGFBPs) in human gastric cancer cells. . Eur J Cancer 37:, 2257–2263. [CrossRef] [PubMed]
    [Google Scholar]
  51. Young F. , Critchley J. A. , Johnstone L. K. , Unwin N. C. . ( 2009; ). A review of co-morbidity between infectious and chronic disease in Sub Saharan Africa: TB and diabetes mellitus, HIV and metabolic syndrome, and the impact of globalization. . Global Health 5:, 9. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.048512-0
Loading
/content/journal/jmm/10.1099/jmm.0.048512-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error