1887

Abstract

Bacterial spores are of continuing interest to the food and medical industries. In efforts to eliminate bacterial spore contamination, a number of sporicidal agents have been developed. Most of these compounds must be used carefully in very specific circumstances as they are toxic to humans. The sporicidal activity of Akwaton, a polyhexamethylene-guanidine hydrochloride (PHMGH)-based disinfectant, was tested against spores. PHMGH is a colourless, odourless, non-corrosive and non-irritating antimicrobial biocide of the guanidine family. Spores suspended in distilled water and spores placed on solid surfaces (stainless steel and glass) were used to determine the log reduction after exposure to varying concentrations of Akwaton. The minimum sporostatic concentration, the minimum sporicidal concentration and the time required for sporicidal activity corresponded to 0.06% (w/v), 0.08 % (w/v) and 8.5 min, respectively. Disinfectant concentrations of 0.24 % (w/v) and 0.44 % (w/v) killed all spores suspended in distilled water within 3 min and 90 s, respectively. The sporicidal activity against suspended spores was linearly dependent with respect to the concentration of PHMGH and contact time (  = 40−1.6 and  = 20−0.8 thus  = 2 ). Spores placed on surfaces were more resistant to the effect of the disinfectant and the positive linear correlation between the sporicidal activity and concentration was not observed. The concentration required to kill all spores placed on a surface (stainless steel or glass) corresponded to 0.52 % (w/v) for 90 s of contact and 0.36 % (w/v) for 3 min. This study demonstrated that PHMGH is an effective sporicidal disinfectant with great potential for use in hospitals, laboratories, food industries and households.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.047514-0
2012-10-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/10/1421.html?itemId=/content/journal/jmm/10.1099/jmm.0.047514-0&mimeType=html&fmt=ahah

References

  1. Balassa G., Milhaud P., Raulet E., Silva M. T., Sousa J. C. F. 1979; A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J Gen Microbiol 110:365–379 [View Article][PubMed]
    [Google Scholar]
  2. Baldry M. G. C. 1983; The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. J Appl Bacteriol 54:417–423 [View Article][PubMed]
    [Google Scholar]
  3. Bayliss C. E., Waites W. M. 1979; The synergistic killing of spores of Bacillus subtilis by hydrogen peroxide and ultraviolet light irradiation. FEMS Microbiol Lett 5:331–333 [View Article]
    [Google Scholar]
  4. Chatuev B. M., Peterson J. W. 2010; Analysis of the sporicidal activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain). J Hosp Infect 74:178–183 [View Article][PubMed]
    [Google Scholar]
  5. Cook F. M., Pierson M. D. 1983; Inhibition of bacterial spores by antimicrobials. Food Technol 37:115–126
    [Google Scholar]
  6. Cousins C. M., Allan C. D. 1967; Sporicidal properties of some halogens. J Appl Bacteriol 30:168–174 [View Article][PubMed]
    [Google Scholar]
  7. Gilbert P., Moore L. E. 2005; Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715 [View Article][PubMed]
    [Google Scholar]
  8. Gorman S. P., Scott E. M., Russell A. D. 1980; Antimicrobial activity, uses and mechanism of action of glutaraldehyde. J Appl Bacteriol 48:161–190 [View Article][PubMed]
    [Google Scholar]
  9. Gorman S. P., Scott E. M., Hutchinson E. P. 1984; Emergence and development of resistance to antimicrobial chemicals and heat in spores of Bacillus subtilis. J Appl Bacteriol 57:153–163 [View Article][PubMed]
    [Google Scholar]
  10. Gorman S. P., Jones D. S., Loftus A. M. 1987; The sporicidal activity and inactivation of chlorhexidine gluconate in aqueous and alcoholic solution. J Appl Bacteriol 63:183–188 [View Article][PubMed]
    [Google Scholar]
  11. Hiti K., Walochnik J., Haller-Schober E. M., Faschinger C., Aspöck H. 2002; Viability of Acanthamoeba after exposure to a multipurpose disinfecting contact lens solution and two hydrogen peroxide systems. Br J Ophthalmol 86:144–146 [View Article][PubMed]
    [Google Scholar]
  12. Huber W. G. 1982; Antiseptics and disinfectants. In Veterinary Pharmacology and Therapeutics pp. 693–716 Edited by Booth N. H., McDonald L. E. Ames, Iowa: Iowa State University Press;
    [Google Scholar]
  13. Khadre M. A., Yousef A. E. 2001; Sporicidal action of ozone and hydrogen peroxide: a comparative study. Int J Food Microbiol 71:131–138 [View Article][PubMed]
    [Google Scholar]
  14. Knott A. G., Russell A. D., Dancer B. N. 1995; Development of resistance to biocides during sporulation of Bacillus subtilis. J Appl Bacteriol 79:492–498 [View Article]
    [Google Scholar]
  15. Krebs F. C., Miller S. R., Ferguson M. L., Labib M., Rando R. F., Wigdahl B. 2005; Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomed Pharmacother 59:438–445 [View Article][PubMed]
    [Google Scholar]
  16. Kunihiko U., Takahashi C., Kobayashi I. 2010; Inactivation of Bacillus subtilis spores in soybean milk by radio-frequency flash heating. J Food Eng 100:622–626 [View Article]
    [Google Scholar]
  17. Kusnetsov J. M., Tulkki A. I., Ahonen H. E., Martikainen P. J. 1997; Efficacy of three prevention strategies against legionella in cooling water systems. J Appl Microbiol 82:763–768 [View Article][PubMed]
    [Google Scholar]
  18. Kuznetsov Y. I. 2004; Physicochemical aspects of metal corrosion inhibition in aqueous solutions. Russ Chem Rev 73:75–87 [View Article]
    [Google Scholar]
  19. Labbe R. G., Reich R. R., Duncan C. L. 1978; Alteration in ultrastructure and germination of Clostridium perfringens type A spores following extraction of spore coats. Can J Microbiol 24:1526–1536 [View Article][PubMed]
    [Google Scholar]
  20. McDonnell G., Russell A. D. 1999; Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179[PubMed]
    [Google Scholar]
  21. Müller G., Kramer A. 2005; Effect of selected wound antiseptics on adult articular cartilage (bovine sesamoid bone) in the presence of Escherichia coli and Staphylococcus aureus. J Orthop Res 23:127–133 [View Article][PubMed]
    [Google Scholar]
  22. Oulé M. K., Azinwi R., Bernier A.-M., Kablan T., Maupertuis A.-M., Mauler S., Nevry R. K., Dembélé K., Forbes L., Diop L. 2008; Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol 57:1523–1528 [View Article][PubMed]
    [Google Scholar]
  23. Oulé M., Kablan T., Arul J. 2010; Inactivation of Bacillus subtilis spores with pressurized CO2 and influence of O2, N2O and CH3CH2OH on its sporicidal activity. European J Sci Res 40:6–14
    [Google Scholar]
  24. Power E. G. M. 1997; Aldehydes as biocides. Prog Med Chem 34:149–201 [View Article]
    [Google Scholar]
  25. Power E. G., Russell A. D. 1990; Sporicidal action of alkaline glutaraldehyde: factors influencing activity and a comparison with other aldehydes. J Appl Bacteriol 69:261–268 [View Article][PubMed]
    [Google Scholar]
  26. Reich R. R. 1980; Effect of sublethal ethylene oxide exposure on Bacillus subtilis spores and biological indicator performance. J Parenter Drug Assoc 34:200–211[PubMed]
    [Google Scholar]
  27. Rogers J. V., Sabourin C. L. K., Choi Y. W., Richter W. R., Rudnicki D. C., Riggs K. B., Taylor M. L., Chang J. 2005; Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator. J Appl Microbiol 99:739–748 [View Article][PubMed]
    [Google Scholar]
  28. Rosin M., Welk A., Bernhardt O., Ruhnau M., Pitten F.-A., Kocher T., Kramer A. 2001; Effect of a polyhexamethylene biguanide mouthrinse on bacterial counts and plaque. J Clin Periodontol 28:1121–1126 [View Article][PubMed]
    [Google Scholar]
  29. Russell A. D. 1990; Bacterial spores and chemical sporicidal agents. Clin Microbiol Rev 3:99–119[PubMed]
    [Google Scholar]
  30. Russell A. D., Hugo W. B. 1987; Chemical disinfectants. In Disinfection in Veterinary and Farm Animal Practice pp. 1242–1247 Edited by Linton A. H., Hugo W. B., Russell A. D. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  31. Russell A. D., Jones B. D., Milburn P. 1985; Reversal of the inhibition of bacterial spore germination and outgrowth by antibacterial agents. Int J Pharm 25:105–112 [View Article]
    [Google Scholar]
  32. Russell A. D., Furr J. R., Maillard J.-Y. 1997; Microbial susceptibility and resistance to biocides. ASM News 63:481–487
    [Google Scholar]
  33. Setlow B., Loshon C. A., Genest P. C., Cowan A. E., Setlow C., Setlow P. 2002; Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J Appl Microbiol 92:362–375 [View Article][PubMed]
    [Google Scholar]
  34. Shaker L. A., Russell A. D., Furr J. R. 1986; Aspects of the action of chlorhexidine on bacterial spores. Int J Pharm 34:51–56 [View Article]
    [Google Scholar]
  35. Soberón J. R., Sgariglia M. A., Sampietro D. A., Quiroga E. N., Vattuone M. A. 2007; Antibacterial activity of plant extracts from northwestern Argentina. J Appl Microbiol 102:1450–1461 [View Article][PubMed]
    [Google Scholar]
  36. Sykes G. 1970; (Symposium on bacterial spores: paper XII) The sporicidal properties of chemical disinfectants. J Appl Microbiol 33:147–156 [View Article]
    [Google Scholar]
  37. Tennen R., Setlow B., Davis K. L., Loshon C. A., Setlow P. 2000; Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J Appl Microbiol 89:330–338 [View Article][PubMed]
    [Google Scholar]
  38. Trujillo R., David T. J. 1972; Sporostatic and sporicidal properties of aqueous formaldehyde. Appl Microbiol 23:618–622
    [Google Scholar]
  39. Young S. B., Setlow P. 2003; Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. J Appl Microbiol 95:54–67 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.047514-0
Loading
/content/journal/jmm/10.1099/jmm.0.047514-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error