1887

Abstract

Although previous studies investigating the MALDI Biotyper database (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based identification) have proven its high accuracy for bacterial identification, the studies differed in sample preparation, number of replicates, quantity of shots and target types used. In particular, the score cut-off values of special importance for reliable species identification varied. The aim of the present study was to identify species-specific differences in the mean score values for staphylococci. Cut-off values recommended by the manufacturer were adapted using the 20th percentile to rule out unknown score-modifying factors, even though the specificity was high and the lowest cut-off values would also yield an accurate result. Whilst correct species diagnosis was obtained in 97.32 % of samples (1382/1420), only 220 of all duplicates (15.49 %) revealed a score of ≥2.3, whilst 968 (68.17 %) had a score between 2.0 and 2.299, and 194 (13.66 %) had a score of <2.0. Ten of 21 species had a calculated 20th percentile of <2.0 and one species of <1.7. In conclusion, the use of species-specific cut-off values improves the relative sensitivity of species identification in staphylococci.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.042606-0
2012-10-01
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/10/1409.html?itemId=/content/journal/jmm/10.1099/jmm.0.042606-0&mimeType=html&fmt=ahah

References

  1. Barenfanger J., Drake C., Kacich G. 1999; Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J Clin Microbiol 37:1415–1418[PubMed]
    [Google Scholar]
  2. Bernardo K., Pakulat N., Macht M., Krut O., Seifert H., Fleer S., Hünger F., Krönke M. 2002; Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2:747–753 [View Article][PubMed]
    [Google Scholar]
  3. Bizzini A., Durussel C., Bille J., Greub G., Prod’hom G. 2010; Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48:1549–1554 [View Article][PubMed]
    [Google Scholar]
  4. Carbonnelle E., Beretti J. L., Cottyn S., Quesne G., Berche P., Nassif X., Ferroni A. 2007; Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45:2156–2161 [View Article][PubMed]
    [Google Scholar]
  5. Carpaij N., Willems R. J., Bonten M. J., Fluit A. C. 2011; Comparison of the identification of coagulase-negative staphylococci by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tuf sequencing. Eur J Clin Microbiol Infect Dis 30:1169–1172 [View Article][PubMed]
    [Google Scholar]
  6. Cherkaoui A., Emonet S., Fernandez J., Schorderet D., Schrenzel J. 2011; Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of β-hemolytic streptococci. J Clin Microbiol 49:3004–3005 [View Article][PubMed]
    [Google Scholar]
  7. Claydon M. A., Davey S. N., Edwards-Jones V., Gordon D. B. 1996; The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586 [View Article][PubMed]
    [Google Scholar]
  8. Dubois D., Leyssene D., Chacornac J. P., Kostrzewa M., Schmit P. O., Talon R., Bonnet R., Delmas J. 2010; Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:941–945 [View Article][PubMed]
    [Google Scholar]
  9. Dupont C., Sivadon-Tardy V., Bille E., Dauphin B., Beretti J. L., Alvarez A. S., Degand N., Ferroni A., Rottman M. other authors 2010; Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin Microbiol Infect 16:998–1004[PubMed] [CrossRef]
    [Google Scholar]
  10. Eigner U., Holfelder M., Oberdorfer K., Betz-Wild U., Bertsch D., Fahr A. M. 2009; Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin Lab 55:289–296[PubMed]
    [Google Scholar]
  11. Freney J., Brun Y., Bes M., Meugnier H., Grimont F., Grimont P. A. D., Nervi C., Fleurette J. 1988; Staphylococcus lugdunensis sp. nov. and Staphylococcus schleiferi sp. nov., two new species from human clinical specimens. Int J Syst Bacteriol 38:168–172 [View Article]
    [Google Scholar]
  12. Friedrichs C., Rodloff A. C., Chhatwal G. S., Schellenberger W., Eschrich K. 2007; Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45:2392–2397 [View Article][PubMed]
    [Google Scholar]
  13. Hajek V. 1976; Staphylococcus intermedius, a new species isolated from animals. Int J Syst Bacteriol 26:401–408 [View Article]
    [Google Scholar]
  14. Harris L. G., El-Bouri K., Johnston S., Rees E., Frommelt L., Siemssen N., Christner M., Davies A. P., Rohde H., Mack D. 2010; Rapid identification of staphylococci from prosthetic joint infections using MALDI-TOF mass-spectrometry. Int J Artif Organs 33:568–574[PubMed]
    [Google Scholar]
  15. Hauschild T., Stepanovic S. 2008; Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism analysis of dnaJ gene. J Clin Microbiol 46:3875–3879 [View Article][PubMed]
    [Google Scholar]
  16. Holland R. D., Wilkes J. G., Rafii F., Sutherland J. B., Persons C. C., Voorhees K. J., Lay J. O. Jr 1996; Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232 [View Article][PubMed]
    [Google Scholar]
  17. Iwase T., Seki K., Shinji H., Mizunoe Y., Masuda S. 2007; Development of a real-time PCR assay for the detection and identification of Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri . J Med Microbiol 56:1346–1349 [View Article][PubMed]
    [Google Scholar]
  18. Kawamura Y., Hou X.-G., Sultana F., Hirose K., Miyake M., Shu S.-E., Ezaki T. 1998; Distribution of Staphylococcus species among human clinical specimens and emended description of Staphylococcus caprae . J Clin Microbiol 36:2038–2042[PubMed]
    [Google Scholar]
  19. Kloos W. E., Schleifer K. H. 1975; Isolation and characterisation of staphylococci from human skin. II. Description of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans . Int J Syst Bacteriol 25:62–79 [View Article]
    [Google Scholar]
  20. La Scola B., Raoult D. 2009; Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS ONE 4:e8041 [View Article][PubMed]
    [Google Scholar]
  21. Longo M. A., Novella I. S., Garcia L. A., Diaz M. 1999; Comparison of Bacillus subtilis and Serratia marcescens as protease producers under different operating conditions. J Biosci Bioeng 88:35–40 [View Article][PubMed]
    [Google Scholar]
  22. Marklein G., Josten M., Klanke U., Müller E., Horré R., Maier T., Wenzel T., Kostrzewa M., Bierbaum G. other authors 2009; Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917 [View Article][PubMed]
    [Google Scholar]
  23. Martineau F., Picard F. J., Roy P. H., Ouellette M., Bergeron M. G. 1998; Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus . J Clin Microbiol 36:618–623[PubMed]
    [Google Scholar]
  24. Martineau F., Picard F. J., Ménard C., Roy P. H., Ouellette M., Bergeron M. G. 2000; Development of a rapid PCR assay specific for Staphylococcus saprophyticus and application to direct detection from urine samples. J Clin Microbiol 38:3280–3284[PubMed]
    [Google Scholar]
  25. Morot-Bizot S. C., Talon R., Leroy S. 2004; Development of a multiplex PCR for the identification of Staphylococcus genus and four staphylococcal species isolated from food. J Appl Microbiol 97:1087–1094 [View Article][PubMed]
    [Google Scholar]
  26. Neville S. A., Lecordier A., Ziochos H., Chater M. J., Gosbell I. B., Maley M. W., van Hal S. J. 2011; Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:2980–2984 [View Article][PubMed]
    [Google Scholar]
  27. Noguchi N., Goto K., Ro T., Narui K., Ko M., Nasu Y., Utsumi K., Takazawa K., Moriyasu F., Sasatsu M. 2010; Using the tannase gene to rapidly and simply identify Staphylococcus lugdunensis . Diagn Microbiol Infect Dis 66:120–123 [View Article][PubMed]
    [Google Scholar]
  28. Poyart C., Quesne G., Boumaila C., Trieu-Cuot P. 2001; Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39:4296–4301 [View Article][PubMed]
    [Google Scholar]
  29. Rajakaruna L., Hallas G., Molenaar L., Dare D., Sutton H., Encheva V., Culak R., Innes I., Ball G., Sefton A. M. 2009; High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells. Infect Genet Evol 9:507–513 [View Article][PubMed]
    [Google Scholar]
  30. Risch M., Radjenovic D., Han J. N., Wydler M., Nydegger U., Risch L. 2010; Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly 140:w13095[PubMed]
    [Google Scholar]
  31. Schleifer K. H., Kloos W. E. 1975; Isolation and characterization of staphylococci from human skin. I. Amended descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus, and description of three new species: Staphylococcus cohnii, Staphylococcus haemolyticus, and Staphylococcus xylosus . Int J Syst Bacteriol 25:50–61 [View Article]
    [Google Scholar]
  32. Schleifer K. H., Kocur M. 1973; Classification of staphylococci based on chemical and biochemical properties. Arch Mikrobiol 93:65–85 [View Article][PubMed]
    [Google Scholar]
  33. Seng P., Drancourt M., Gouriet F., La Scola B., Fournier P. E., Rolain J. M., Raoult D. 2009; Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551 [View Article][PubMed]
    [Google Scholar]
  34. Shrestha N. K., Tuohy M. J., Hall G. S., Isada C. M., Procop G. W. 2002; Rapid identification of Staphylococcus aureus and the mecA gene from BacT/ALERT blood culture bottles by using the LightCycler system. J Clin Microbiol 40:2659–2661 [View Article][PubMed]
    [Google Scholar]
  35. Stevenson L. G., Drake S. K., Murray P. R. 2010; Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:444–447 [View Article][PubMed]
    [Google Scholar]
  36. Stuhlmeier R., Stuhlmeier K. M. 2003; Fast, simultaneous, and sensitive detection of staphylococci. J Clin Pathol 56:782–785 [View Article][PubMed]
    [Google Scholar]
  37. Szabados F., Woloszyn J., Richter C., Kaase M., Gatermann S. 2010; Identification of molecularly defined Staphylococcus aureus strains using matrix-assisted laser desorption/ionization time of flight mass spectrometry and the Biotyper 2.0 database. J Med Microbiol 59:787–790 [View Article][PubMed]
    [Google Scholar]
  38. Szabados F., Woloszyn J., Kaase M., Gatermann S. G. 2011a; False-negative test results in the Slidex Staph Plus (bioMérieux) agglutination test are mainly caused by spa-type t001 and t001-related strains. Eur J Clin Microbiol Infect Dis 30:201–208 [View Article][PubMed]
    [Google Scholar]
  39. Szabados F., Michels M., Kaase M., Gatermann S. 2011b; The sensitivity of direct identification from positive BacT/ALERT™ (bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect 17:192–195 [View Article][PubMed]
    [Google Scholar]
  40. Szabados F., Anders A., Kaase M., Marlinghaus L., Gatermann S. G., Teske W., Lichtinger T. 2011c; Late periprosthetic joint infection due to Staphylococcus lugdunensis identified by matrix-assisted laser desorption/ionisation time of flight mass spectrometry: a case report and review of the literature. Case Rep Med 2011:608919[PubMed]
    [Google Scholar]
  41. Szabados F., Tix H., Anders A., Kaase M., Gatermann S. G., Geis G. 2012; Evaluation of species-specific score cutoff values of routinely isolated clinically relevant bacteria using a direct smear preparation for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based bacterial identification. Eur J Clin Microbiol Infect Dis 31:1109–1119 [View Article][PubMed]
    [Google Scholar]
  42. Valentine N., Wunschel S., Wunschel D., Petersen C., Wahl K. 2005; Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 71:58–64 [View Article][PubMed]
    [Google Scholar]
  43. von Eiff C., Arciola C. R., Montanaro L., Becker K., Campoccia D. 2006; Emerging Staphylococcus species as new pathogens in implant infections. Int J Artif Organs 29:360–367[PubMed]
    [Google Scholar]
  44. Winslow C. E. 1908; A new method of enumerating bacteria in air. Science 28:28–31 [View Article][PubMed]
    [Google Scholar]
  45. Wunschel D. S., Hill E. A., McLean J. S., Jarman K., Gorby Y. A., Valentine N., Wahl K. 2005; Effects of varied pH, growth rate and temperature using controlled fermentation and batch culture on matrix assisted laser desorption/ionization whole cell protein fingerprints. J Microbiol Methods 62:259–271 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.042606-0
Loading
/content/journal/jmm/10.1099/jmm.0.042606-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error