1887

Abstract

is a Gram-negative organism reported worldwide as a cause of health-care-associated infections, particularly in intensive care units (ICUs). The aim of this study is to describe the emergence and spread of carbapenem-resistant (CRAB) isolates in hospitalized patients. From March to November 2009, multidrug-resistant CRAB isolates were obtained from 21 patients hospitalized in different wards (mostly ICUs). Antimicrobial susceptibility was determined by using the Etest method. Carbapenem and aminoglycoside resistance determinants were studied by PCR and sequencing. Genetic relatedness was investigated by pulsed-field gel electrophoresis and multiplex PCR identification of sequence groups. Clinical records of patients were examined retrospectively. CRAB isolates were consistently resistant to multiple drugs including fluoroquinolones and aminoglycosides, whereas they retained a susceptibility to colistin. Molecular analysis revealed that 19 of the 21 CRAB isolates belonged to a single clone producing both the carbapenemase OXA-23 and the 16S rRNA methylase ArmA. Based on clinical data, the patients included in the study were classified as infected ( = 13) or colonized ( = 8). Colistin alone or in combination with ampicillin–sulbactam was administered to 11 of the 13 infected patients. A complete or partial response was obtained in eight cases, whereas a failure to respond was observed in one patient and a relapse was observed in two patients. An clone producing both OXA-23 and ArmA has been identified as an emerging and rapidly spreading pathogen. To our knowledge, this is the first report of the ArmA enzyme in in Italy and is the first report of hospital dissemination of carrying both and genes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.040980-0
2012-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/5/653.html?itemId=/content/journal/jmm/10.1099/jmm.0.040980-0&mimeType=html&fmt=ahah

References

  1. Afzal-Shah M., Woodford N., Livermore D. M.. ( 2001;). Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. . Antimicrob Agents Chemother 45:, 583–588. [CrossRef][PubMed]
    [Google Scholar]
  2. Bassetti M., Repetto E., Righi E., Boni S., Diverio M., Molinari M. P., Mussap M., Artioli S., Ansaldi F.. & other authors ( 2008;). Colistin and rifampicin in the treatment of multidrug-resistant Acinetobacter baumannii infections. . J Antimicrob Chemother 61:, 417–420. [CrossRef][PubMed]
    [Google Scholar]
  3. Bou G., Martínez-Beltrán J.. ( 2000;). Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. . Antimicrob Agents Chemother 44:, 428–432. [CrossRef][PubMed]
    [Google Scholar]
  4. Chang H. C., Wei Y. F., Dijkshoorn L., Vaneechoutte M., Tang C. T., Chang T. C.. ( 2005;). Species-level identification of isolates of the Acinetobacter calcoaceticusAcinetobacter baumannii complex by sequence analysis of the 16S–23S rRNA gene spacer region. . J Clin Microbiol 43:, 1632–1639. [CrossRef][PubMed]
    [Google Scholar]
  5. CLSI ( 2011;). Performance Standards for Antimicrobial Susceptibility Testing, supplement M100–S21. . Wayne, PA:; Clinical and Laboratory Standards Institute;.
  6. D’Arezzo S., Principe L., Capone A., Petrosillo N., Petrucca A., Visca P.. ( 2011;). Changing carbapenemase gene pattern in an epidemic multidrug-resistant Acinetobacter baumannii lineage causing multiple outbreaks in central Italy. . J Antimicrob Chemother 66:, 54–61. [CrossRef][PubMed]
    [Google Scholar]
  7. Di Popolo A., Giannouli M., Triassi M., Brisse S., Zarrilli R.. ( 2011;). Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme. . Clin Microbiol Infect 17:, 197–201. [CrossRef][PubMed]
    [Google Scholar]
  8. Doi Y., Arakawa Y.. ( 2007;). 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. . Clin Infect Dis 45:, 88–94. [CrossRef][PubMed]
    [Google Scholar]
  9. Garnacho-Montero J., Amaya-Villar R.. ( 2010;). Multiresistant Acinetobacter baumannii infections: epidemiology and management. . Curr Opin Infect Dis 23:, 332–339. [CrossRef][PubMed]
    [Google Scholar]
  10. Giamarellos-Bourboulis E. J., Xirouchaki E., Giamarellou H.. ( 2001;). Interactions of colistin and rifampin on multidrug-resistant Acinetobacter baumannii. . Diagn Microbiol Infect Dis 40:, 117–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Giannouli M., Cuccurullo S., Crivaro V., Di Popolo A., Bernardo M., Tomasone F., Amato G., Brisse S., Triassi M.. & other authors ( 2010;). Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a tertiary care hospital in Naples, Italy, shows the emergence of a novel epidemic clone. . J Clin Microbiol 48:, 1223–1230. [CrossRef][PubMed]
    [Google Scholar]
  12. Héritier C., Poirel L., Fournier P.-E., Claverie J.-M., Raoult D., Nordmann P.. ( 2005;). Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. . Antimicrob Agents Chemother 49:, 4174–4179. [CrossRef][PubMed]
    [Google Scholar]
  13. Koeleman J. G., Stoof J., Van Der Bijl M. W., Vandenbroucke-Grauls C. M. J. E., Savelkoul P. H. M.. ( 2001;). Identification of epidemic strains of Acinetobacter baumannii by integrase gene PCR. . J Clin Microbiol 39:, 8–13. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee H., Yong D., Yum J. H., Roh K. H., Lee K., Yamane K., Arakawa Y., Chong Y.. ( 2006;). Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. . Diagn Microbiol Infect Dis 56:, 305–312. [CrossRef][PubMed]
    [Google Scholar]
  15. Liu S.-L., Hessel A., Sanderson K. E.. ( 1993;). Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. . Proc Natl Acad Sci U S A 90:, 6874–6878. [CrossRef][PubMed]
    [Google Scholar]
  16. Manikal V. M., Landman D., Saurina G., Oydna E., Lal H., Quale J.. ( 2000;). Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: citywide prevalence, interinstitutional spread, and relation to antibiotic usage. . Clin Infect Dis 31:, 101–106. [CrossRef][PubMed]
    [Google Scholar]
  17. Mugnier P. D., Poirel L., Nordmann P.. ( 2009;). Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. . J Bacteriol 191:, 2414–2418. [CrossRef][PubMed]
    [Google Scholar]
  18. Mugnier P. D., Poirel L., Naas T., Nordmann P.. ( 2010;). Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. . Emerg Infect Dis 16:, 35–40. [CrossRef][PubMed]
    [Google Scholar]
  19. Neonakis I. K., Spandidos D. A., Petinaki E.. ( 2011;). Confronting multidrug-resistant Acinetobacter baumannii: a review. . Int J Antimicrob Agents 37:, 102–109. [CrossRef][PubMed]
    [Google Scholar]
  20. Nucleo E., Steffanoni L., Fugazza G., Migliavacca R., Giacobone E., Navarra A., Pagani L., Landini P.. ( 2009;). Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. . BMC Microbiol 9:, 270. [CrossRef][PubMed]
    [Google Scholar]
  21. Pagani L., Migliavacca R., Pallecchi L., Matti C., Giacobone E., Amicosante G., Romero E., Rossolini G. M.. ( 2002;). Emerging extended-spectrum β-lactamases in Proteus mirabilis. . J Clin Microbiol 40:, 1549–1552. [CrossRef][PubMed]
    [Google Scholar]
  22. Peleg A. Y., Seifert H., Paterson D. L.. ( 2008;). Acinetobacter baumannii: emergence of a successful pathogen. . Clin Microbiol Rev 21:, 538–582. [CrossRef][PubMed]
    [Google Scholar]
  23. Perez F., Hujer A. M., Hujer K. M., Decker B. K., Rather P. N., Bonomo R. A.. ( 2007;). Global challenge of multidrug-resistant Acinetobacter baumannii. . Antimicrob Agents Chemother 51:, 3471–3484. [CrossRef][PubMed]
    [Google Scholar]
  24. Poirel L., Nordmann P.. ( 2006;). Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. . Clin Microbiol Infect 12:, 826–836. [CrossRef][PubMed]
    [Google Scholar]
  25. Poirel L., Naas T., Nordmann P.. ( 2010;). Diversity, epidemiology, and genetics of class D β-lactamases. . Antimicrob Agents Chemother 54:, 24–38. [CrossRef][PubMed]
    [Google Scholar]
  26. Quale J., Bratu S., Landman D., Heddurshetti R.. ( 2003;). Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. . Clin Infect Dis 37:, 214–220. [CrossRef][PubMed]
    [Google Scholar]
  27. Scaife W., Young H. K., Paton R. H., Amyes S. G.. ( 1995;). Transferable imipenem-resistance in Acinetobacter species from a clinical source. . J Antimicrob Chemother 36:, 585–586. [CrossRef][PubMed]
    [Google Scholar]
  28. Seifert H., Dolzani L., Bressan R., van der Reijden T., van Strijen B., Stefanik D., Heersma H., Dijkshoorn L.. ( 2005;). Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. . J Clin Microbiol 43:, 4328–4335. [CrossRef][PubMed]
    [Google Scholar]
  29. Towner K. J.. ( 2009;). Acinetobacter: an old friend, but a new enemy. . J Hosp Infect 73:, 355–363. [CrossRef][PubMed]
    [Google Scholar]
  30. Towner K. J., Levi K., Vlassiadi M..on behalf of the ARPAC Steering Group ( 2008;). Genetic diversity of carbapenem-resistant isolates of Acinetobacter baumannii in Europe. . Clin Microbiol Infect 14:, 161–167. [CrossRef][PubMed]
    [Google Scholar]
  31. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L.. ( 2006;). The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. . FEMS Microbiol Lett 258:, 72–77. [CrossRef][PubMed]
    [Google Scholar]
  32. Turton J. F., Gabriel S. N., Valderrey C., Kaufmann M. E., Pitt T. L.. ( 2007;). Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. . Clin Microbiol Infect 13:, 807–815. [CrossRef][PubMed]
    [Google Scholar]
  33. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G. B., Livermore D. M.. ( 2006;). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.. Int J Antimicrob Agents 27:, 351–353. [CrossRef][PubMed]
    [Google Scholar]
  34. Yu Y. S., Zhou H., Yang Q., Chen Y. G., Li L. J.. ( 2007;). Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. . J Antimicrob Chemother 60:, 454–455. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.040980-0
Loading
/content/journal/jmm/10.1099/jmm.0.040980-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error