1887

Abstract

This study investigated the time to positivity (TTP) for different species of causing bloodstream infection and whether TTP can help differentiate fluconazole-resistant and from other species. We conducted this study at the National Taiwan University Hospital, a 2500-bed tertiary care medical centre in northern Taiwan. Patients with candidaemia were identified by central laboratory personnel from July 2010 to March 2011. TTP in each patient was determined using an automated blood culture instrument. Each patient was included only once at the time of detection of the first bloodstream infection. During the study period, a total of 329 sets of blood cultures positive for were isolated from 176 patients. The mean TTP for all isolates causing candidaemia was 25.9±24.9 h. The TTP for was significantly longer than the TTP of the other species. In contrast, the TTP of was significantly shorter than that of the other three species. The diagnostic sensitivity of TTP for isolates in patients with candidaemia was 93.9 % (95 % CI 0.798–0.993), the specificity was 66.4 % (95 % CI 0.581–0.741), the positive predictive value was 39.2 % (95 % CI 0.286–0.509), and the negative predictive value was 97.9 % (95 % CI 0.92–0.996) with a TTP cut-off value of >27.7 h. In conclusion, the different TTP values of different species causing bloodstream infection may be helpful in differentiating from other species.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.038166-0
2012-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/5/701.html?itemId=/content/journal/jmm/10.1099/jmm.0.038166-0&mimeType=html&fmt=ahah

References

  1. Abi-Said D. , Anaissie E. , Uzun O. , Raad I. , Pinzcowski H. , Vartivarian S. . ( 1997; ). The epidemiology of hematogenous candidiasis caused by different Candida species. . Clin Infect Dis 24:, 1122–1128. [CrossRef] [PubMed]
    [Google Scholar]
  2. Almirante B. , Rodríguez D. , Park B. J. , Cuenca-Estrella M. , Planes A. M. , Almela M. , Mensa J. , Sanchez F. , Ayats J. . & other authors ( 2005; ). Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003. . J Clin Microbiol 43:, 1829–1835. [CrossRef] [PubMed]
    [Google Scholar]
  3. Asmundsdóttir L. R. , Erlendsdóttir H. , Gottfredsson M. . ( 2002; ). Increasing incidence of candidemia: results from a 20-year nationwide study in Iceland. . J Clin Microbiol 40:, 3489–3492. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barnes R. A. . ( 2008; ). Early diagnosis of fungal infection in immunocompromised patients. . J Antimicrob Chemother 61: (Suppl. 1), i3–i6. [CrossRef] [PubMed]
    [Google Scholar]
  5. Ben-Ami R. , Weinberger M. , Orni-Wasserlauff R. , Schwartz D. , Itzhaki A. , Lazarovitch T. , Bash E. , Aharoni Y. , Moroz I. , Giladi M. . ( 2008; ). Time to blood culture positivity as a marker for catheter-related candidemia. . J Clin Microbiol 46:, 2222–2226. [CrossRef] [PubMed]
    [Google Scholar]
  6. Blot F. , Schmidt E. , Nitenberg G. , Tancrède C. , Leclercq B. , Laplanche A. , Andremont A. . ( 1998; ). Earlier positivity of central-venous- versus peripheral-blood cultures is highly predictive of catheter-related sepsis. . J Clin Microbiol 36:, 105–109.[PubMed]
    [Google Scholar]
  7. Garey K. W. , Rege M. , Pai M. P. , Mingo D. E. , Suda K. J. , Turpin R. S. , Bearden D. T. . ( 2006; ). Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. . Clin Infect Dis 43:, 25–31. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gherna M. , Merz W. G. . ( 2009; ). Identification of Candida albicans and Candida glabrata within 1.5 hours directly from positive blood culture bottles with a shortened peptide nucleic acid fluorescence in situ hybridization protocol. . J Clin Microbiol 47:, 247–248. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gumbo T. , Isada C. M. , Hall G. , Karafa M. T. , Gordon S. M. . ( 1999; ). Candida glabrata fungemia. Clinical features of 139 patients. . Medicine (Baltimore) 78:, 220–227. [CrossRef] [PubMed]
    [Google Scholar]
  10. Horvath L. L. , George B. J. , Murray C. K. , Harrison L. S. , Hospenthal D. R. . ( 2004; ). Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for Candida growth detection. . J Clin Microbiol 42:, 115–118. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hsiue H. C. , Huang Y. T. , Kuo Y. L. , Liao C. H. , Chang T. C. , Hsueh P. R. . ( 2010; ). Rapid identification of fungal pathogens in positive blood cultures using oligonucleotide array hybridization. . Clin Microbiol Infect 16:, 493–500. [CrossRef] [PubMed]
    [Google Scholar]
  12. Khatib R. , Riederer K. , Saeed S. , Johnson L. B. , Fakih M. G. , Sharma M. , Tabriz M. S. , Khosrovaneh A. . ( 2005; ). Time to positivity in Staphylococcus aureus bacteremia: possible correlation with the source and outcome of infection. . Clin Infect Dis 41:, 594–598. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lai C. C. , Wang C. Y. , Liu W. L. , Huang Y. T. , Liao C. H. , Hsueh P. R. . ( 2011; ). Time to positivity in blood cultures of staphylococci: clinical significance in bacteremia. . J Infect 62:, 249–251. [CrossRef] [PubMed]
    [Google Scholar]
  14. Leaw S. N. , Chang H. C. , Sun H. F. , Barton R. , Bouchara J. P. , Chang T. C. . ( 2006; ). Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. . J Clin Microbiol 44:, 693–699. [CrossRef] [PubMed]
    [Google Scholar]
  15. Li Y. L. , Leaw S. N. , Chen J. H. , Chang H. C. , Chang T. C. . ( 2003; ). Rapid identification of yeasts commonly found in positive blood cultures by amplification of the internal transcribed spacer regions 1 and 2. . Eur J Clin Microbiol Infect Dis 22:, 693–696. [CrossRef] [PubMed]
    [Google Scholar]
  16. Louie R. F. , Tang Z. , Albertson T. E. , Cohen S. , Tran N. K. , Kost G. J. . ( 2008; ). Multiplex polymerase chain reaction detection enhancement of bacteremia and fungemia. . Crit Care Med 36:, 1487–1492. [CrossRef] [PubMed]
    [Google Scholar]
  17. Malani A. , Hmoud J. , Chiu L. , Carver P. L. , Bielaczyc A. , Kauffman C. A. . ( 2005; ). Candida glabrata fungemia: experience in a tertiary care center. . Clin Infect Dis 41:, 975–981. [CrossRef] [PubMed]
    [Google Scholar]
  18. Morrell M. , Fraser V. J. , Kollef M. H. . ( 2005; ). Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. . Antimicrob Agents Chemother 49:, 3640–3645. [CrossRef] [PubMed]
    [Google Scholar]
  19. Orozco A. S. , Higginbotham L. M. , Hitchcock C. A. , Parkinson T. , Falconer D. , Ibrahim A. S. , Ghannoum M. A. , Filler S. G. . ( 1998; ). Mechanism of fluconazole resistance in Candida krusei . . Antimicrob Agents Chemother 42:, 2645–2649.[PubMed]
    [Google Scholar]
  20. Park S. H. , Shim H. , Yoon N. S. , Kim M. N. . ( 2010; ). [Clinical relevance of time-to-positivity in BACTEC9240 blood culture system]. . Korean J Lab Med 30:, 276–283 (in Korean). [CrossRef] [PubMed]
    [Google Scholar]
  21. Parkinson T. , Falconer D. J. , Hitchcock C. A. . ( 1995; ). Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata . . Antimicrob Agents Chemother 39:, 1696–1699.[PubMed] [CrossRef]
    [Google Scholar]
  22. Patterson T. F. . ( 2005; ). Advances and challenges in management of invasive mycoses. . Lancet 366:, 1013–1025. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pfaller M. A. , Diekema D. J. . ( 2002; ). Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility. . J Clin Microbiol 40:, 3551–3557. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ruan S. Y. , Hsueh P. R. . ( 2009; ). Invasive candidiasis: an overview from Taiwan. . J Formos Med Assoc 108:, 443–451. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ruan S. Y. , Lee L. N. , Jerng J. S. , Yu C. J. , Hsueh P. R. . ( 2008; ). Candida glabrata fungaemia in intensive care units. . Clin Microbiol Infect 14:, 136–140. [CrossRef] [PubMed]
    [Google Scholar]
  26. Taur Y. , Cohen N. , Dubnow S. , Paskovaty A. , Seo S. K. . ( 2010; ). Effect of antifungal therapy timing on mortality in cancer patients with candidemia. . Antimicrob Agents Chemother 54:, 184–190. [CrossRef] [PubMed]
    [Google Scholar]
  27. Wilson A. G. , Micek S. T. , Ritchie D. J. . ( 2005; ). A retrospective evaluation of fluconazole for the treatment of Candida glabrata fungemia. . Clin Ther 27:, 1228–1237. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wisplinghoff H. , Bischoff T. , Tallent S. M. , Seifert H. , Wenzel R. P. , Edmond M. B. . ( 2004; ). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. . Clin Infect Dis 39:, 309–317. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.038166-0
Loading
/content/journal/jmm/10.1099/jmm.0.038166-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error