1887

Abstract

strain type USA300 is an important human pathogen. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry has been used successfully for rapid identification of at the genus and species levels. Here, it was hypothesized that MALDI-TOF could be used to identify USA300 organisms at the strain level. A genetic algorithm model using ClinProTools software (Bruker Daltonics) was built using 47 isolates of USA300 and 77 non-USA300 isolates. Three mass/charge peaks (5932, 6423 and 6592) were found to be discriminators between the groups of isolates. The model was validated using 224 test isolates: 197 of 224 test isolates were correctly classified as ‘USA300 family’ or ‘non-USA300’. The sensitivity of the model was 0.87, with a specificity of 0.89, positive likelihood ratio of 8.19 and negative likelihood ratio of 0.15. The three-peak intensity MALDI-TOF model designed and tested in the current study can be used to rapidly identify USA300 family isolates with reasonable sensitivity and specificity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.037978-0
2012-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/5/640.html?itemId=/content/journal/jmm/10.1099/jmm.0.037978-0&mimeType=html&fmt=ahah

References

  1. Bessède E., Angla-Gre M., Delagarde Y., Sep Hieng S., Ménard A., Mégraud F.. ( 2011;). Matrix-assisted laser-desorption/ionization biotyper: experience in the routine of a University hospital. . Clin Microbiol Infect 17:, 533–538. [CrossRef][PubMed]
    [Google Scholar]
  2. Carbonnelle E., Beretti J. L., Cottyn S., Quesne G., Berche P., Nassif X., Ferroni A.. ( 2007;). Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. . J Clin Microbiol 45:, 2156–2161. [CrossRef][PubMed]
    [Google Scholar]
  3. Centers for Disease Control and Prevention ( 2001;). Methicillin-resistant Staphylococcus aureus skin or soft tissue infections in a state prison – Mississippi, 2000. . MMWR Morb Mortal Wkly Rep 50:, 919–922.[PubMed]
    [Google Scholar]
  4. Centers for Disease Control and Prevention ( 2003;). Methicillin-resistant Staphylococcus aureus infections among competitive sports participants – Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000–2003. . MMWR Morb Mortal Wkly Rep 52:, 793–795.[PubMed]
    [Google Scholar]
  5. Eigner U., Holfelder M., Oberdorfer K., Betz-Wild U., Bertsch D., Fahr A. M.. ( 2009;). Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. . Clin Lab 55:, 289–296.[PubMed]
    [Google Scholar]
  6. Foster T. J.. ( 2005;). Immune evasion by staphylococci. . Nat Rev Microbiol 3:, 948–958. [CrossRef][PubMed]
    [Google Scholar]
  7. Lemmens N., van Wamel W., Snijders S., Lesse A. J., Faden H., van Belkum A.. ( 2011;). Genomic comparisons of USA300 Staphylococcus aureus colonizating the nose and rectum of children with skin abscesses. . Microb Pathog 50:, 192–199. [CrossRef][PubMed]
    [Google Scholar]
  8. McCaskill M. L., Mason E. O. Jr, Kaplan S. L., Hammerman W., Lamberth L. B., Hultén K. G.. ( 2007;). Increase of the USA300 clone among community-acquired methicillin-susceptible Staphylococcus aureus causing invasive infections. . Pediatr Infect Dis J 26:, 1122–1127. [CrossRef][PubMed]
    [Google Scholar]
  9. McDougal L. K., Fosheim G. E., Nicholson A., Bulens S. N., Limbago B. M., Shearer J. E., Summers A. O., Patel J. B.. ( 2010;). Emergence of resistance among USA300 methicillin-resistant Staphylococcus aureus isolates causing invasive disease in the United States. . Antimicrob Agents Chemother 54:, 3804–3811. [CrossRef][PubMed]
    [Google Scholar]
  10. Mellmann A., Cloud J., Maier T., Keckevoet U., Ramminger I., Iwen P., Dunn J., Hall G., Wilson D.. & other authors ( 2008;). Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. . J Clin Microbiol 46:, 1946–1954. [CrossRef][PubMed]
    [Google Scholar]
  11. Mermel L. A., Eells S. J., Acharya M. K., Cartony J. M., Dacus D., Fadem S., Gay E. A., Gordon S., Lonks J. R.. & other authors ( 2010;). Quantitative analysis and molecular fingerprinting of methicillin-resistant Staphylococcus aureus nasal colonization in different patient populations: a prospective, multicenter study. . Infect Control Hosp Epidemiol 31:, 592–597. [CrossRef][PubMed]
    [Google Scholar]
  12. Monecke S., Ehricht R., Slickers P., Tan H. L., Coombs G.. ( 2009;). The molecular epidemiology and evolution of the Panton–Valentine leukocidin-positive, methicillin-resistant Staphylococcus aureus strain USA300 in Western Australia. . Clin Microbiol Infect 15:, 770–776. [CrossRef][PubMed]
    [Google Scholar]
  13. Moore C. L., Hingwe A., Donabedian S. M., Perri M. B., Davis S. L., Haque N. Z., Reyes K., Vager D., Zervos M. J.. ( 2009;). Comparative evaluation of epidemiology and outcomes of methicillin-resistant Staphylococcus aureus (MRSA) USA300 infections causing community- and healthcare-associated infections. . Int J Antimicrob Agents 34:, 148–155. [CrossRef][PubMed]
    [Google Scholar]
  14. Moran G. J., Krishnadasan A., Gorwitz R. J., Fosheim G. E., McDougal L. K., Carey R. B., Talan D. A..for the EMERGEncy ID Net Study Group ( 2006;). Methicillin-resistant S. aureus infections among patients in the emergency department. . N Engl J Med 355:, 666–674. [CrossRef][PubMed]
    [Google Scholar]
  15. Nagao M., Iinuma Y., Suzuki M., Matsushima A., Takakura S., Ito Y., Ichiyama S.. ( 2010;). First outbreak of methicillin-resistant Staphylococcus aureus USA300 harboring the Panton–Valentine leukocidin genes among Japanese health care workers and hospitalized patients. . Am J Infect Control 38:, e37–e39. [CrossRef][PubMed]
    [Google Scholar]
  16. Orscheln R. C., Hunstad D. A., Fritz S. A., Loughman J. A., Mitchell K., Storch E. K., Gaudreault M., Sellenriek P. L., Armstrong J. R.. & other authors ( 2009;). Contribution of genetically restricted, methicillin-susceptible strains to the ongoing epidemic of community-acquired Staphylococcus aureus infections. . Clin Infect Dis 49:, 536–542. [CrossRef][PubMed]
    [Google Scholar]
  17. Otter J. A., French G. L.. ( 2010;). Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. . Lancet Infect Dis 10:, 227–239. [CrossRef][PubMed]
    [Google Scholar]
  18. Rajakaruna L., Hallas G., Molenaar L., Dare D., Sutton H., Encheva V., Culak R., Innes I., Ball G., Sefton A. M.. ( 2009;). High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells. . Infect Genet Evol 9:, 507–513. [CrossRef][PubMed]
    [Google Scholar]
  19. Reyes J., Rincón S., Díaz L., Panesso D., Contreras G. A., Zurita J., Carrillo C., Rizzi A., Guzmán M.. & other authors ( 2009;). Dissemination of methicillin-resistant Staphylococcus aureus USA300 sequence type 8 lineage in Latin America. . Clin Infect Dis 49:, 1861–1867. [CrossRef][PubMed]
    [Google Scholar]
  20. Schlebusch S., Price G. R., Hinds S., Nourse C., Schooneveldt J. M., Tilse M. H., Liley H. G., Wallis T., Bowling F.. & other authors ( 2010;). First outbreak of PVL-positive nonmultiresistant MRSA in a neonatal ICU in Australia: comparison of MALDI-TOF and SNP-plus-binary gene typing. . Eur J Clin Microbiol Infect Dis 29:, 1311–1314. [CrossRef][PubMed]
    [Google Scholar]
  21. Szabados F., Woloszyn J., Richter C., Kaase M., Gatermann S. G.. ( 2010;). Identification of molecularly defined Staphylococcus aureus strains using matrix-assisted laser desorption/ionization time of flight mass spectrometry and the Biotyper 2.0 database. . J Med Microbiol 59:, 787–790. [CrossRef][PubMed]
    [Google Scholar]
  22. Szabados F., Woloszyn J., Kaase M., Gatermann S. G.. ( 2011;). False-negative test results in the Slidex Staph Plus (bioMérieux) agglutination test are mainly caused by spa-type t001 and t001-related strains. . Eur J Clin Microbiol Infect Dis 30:, 201–208. [CrossRef][PubMed]
    [Google Scholar]
  23. Tenover F. C., Goering R. V.. ( 2009;). Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. . J Antimicrob Chemother 64:, 441–446. [CrossRef][PubMed]
    [Google Scholar]
  24. Tenover F. C., McDougal L. K., Goering R. V., Killgore G., Projan S. J., Patel J. B., Dunman P. M.. ( 2006;). Characterization of a strain of community-associated methicillin-resistant Staphylococcus aureus widely disseminated in the United States. . J Clin Microbiol 44:, 108–118. [CrossRef][PubMed]
    [Google Scholar]
  25. Wolters M., Rohde H., Maier T., Belmar-Campos C., Franke G., Scherpe S., Aepfelbacher M., Christner M.. ( 2011;). MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. . Int J Med Microbiol 301:, 64–68. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.037978-0
Loading
/content/journal/jmm/10.1099/jmm.0.037978-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error