1887

Abstract

The acquired metallo-β-lactamases represent a significant clinical threat due to their unrivalled hydrolysis spectrum and their resistance to therapeutic inhibitors of β-lactamase. In this study, we identified plasmid- and integron-borne in clinical isolates of and . The gene cassette was carried by a typical class 1 integron together with and gene cassettes. The integron, - ---Δ, was easily transferred by intraspecies and intergenus conjugation of bacteria, indicating that the integron is located on a transferable plasmid. The integrated genes were preceded by TGGACA-N-TAAACT, a hybrid P promoter. Similar to the wild-type donors, the transconjugants also showed reduced susceptibility or resistance to carbapenems, amikacin and kanamycin. The identical integron was detected in four bacterial strains which were genetically different but were isolated from infant inpatients in the same paediatric department. These results demonstrate the colonization of the plasmid- and integron-borne and in the hospital environment, highlighting the importance of surveying and controlling the spread of such resistance determinants in nosocomial pathogens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.035626-0
2012-02-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/2/246.html?itemId=/content/journal/jmm/10.1099/jmm.0.035626-0&mimeType=html&fmt=ahah

References

  1. Arakawa Y. , Shibata N. , Shibayama K. , Kurokawa H. , Yagi T. , Fujiwara H. , Goto M. . ( 2000; ). Convenient test for screening metallo-β-lactamase-producing gram-negative bacteria by using thiol compounds. . J Clin Microbiol 38:, 40–43.[PubMed]
    [Google Scholar]
  2. Bassetti M. , Nicolini L. , Esposito S. , Righi E. , Viscoli C. . ( 2009; ). Current status of newer carbapenems. . Curr Med Chem 16:, 564–575. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bradford P. A. . ( 2001; ). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. . Clin Microbiol Rev 14:, 933–951. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bunny K. L. , Hall R. M. , Stokes H. W. . ( 1995; ). New mobile gene cassettes containing an aminoglycoside resistance gene, aacA7, and a chloramphenicol resistance gene, catB3, in an integron in pBWH301. . Antimicrob Agents Chemother 39:, 686–693.[PubMed] [CrossRef]
    [Google Scholar]
  5. Collis C. M. , Hall R. M. . ( 1995; ). Expression of antibiotic resistance genes in the integrated cassettes of integrons. . Antimicrob Agents Chemother 39:, 155–162.[PubMed] [CrossRef]
    [Google Scholar]
  6. Depardieu F. , Podglajen I. , Leclercq R. , Collatz E. , Courvalin P. . ( 2007; ). Modes and modulations of antibiotic resistance gene expression. . Clin Microbiol Rev 20:, 79–114. [CrossRef] [PubMed]
    [Google Scholar]
  7. Hu Z. , Zhao W.-H. . ( 2009; ). Identification of plasmid- and integron-borne bla IMP-1 and bla IMP-10 in clinical isolates of Serratia marcescens . . J Med Microbiol 58:, 217–221. [CrossRef] [PubMed]
    [Google Scholar]
  8. Jacoby G. A. . ( 2009; ). AmpC β-lactamases. . Clin Microbiol Rev 22:, 161–182. [CrossRef] [PubMed]
    [Google Scholar]
  9. Jacoby G. , Bush K. . ( 2011; ). β-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes. . http://www.lahey.org/Studies/. Accessed on 20 June 2011.
  10. Jones R. N. , Deshpande L. M. , Bell J. M. , Turnidge J. D. , Kohno S. , Hirakata Y. , Ono Y. , Miyazawa Y. , Kawakama S. . & other authors ( 2004; ). Evaluation of the contemporary occurrence rates of metallo-β-lactamases in multidrug-resistant Gram-negative bacilli in Japan: report from the SENTRY Antimicrobial Surveillance Program (1998–2002). . Diagn Microbiol Infect Dis 49:, 289–294. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lee K. , Yum J. H. , Yong D. , Lee H. M. , Kim H. D. , Docquier J. D. , Rossolini G. M. , Chong Y. . ( 2005; ). Novel acquired metallo-β-lactamase gene, bla SIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. . Antimicrob Agents Chemother 49:, 4485–4491. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lévesque C. , Brassard S. , Lapointe J. , Roy P. H. . ( 1994; ). Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integrons. . Gene 142:, 49–54. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lister P. D. . ( 2007; ). Carbapenems in the USA: focus on doripenem. . Expert Rev Anti Infect Ther 5:, 793–809. [CrossRef] [PubMed]
    [Google Scholar]
  14. Mazel D. . ( 2006; ). Integrons: agents of bacterial evolution. . Nat Rev Microbiol 4:, 608–620. [CrossRef] [PubMed]
    [Google Scholar]
  15. Poirel L. , Rodríguez-Martínez J. M. , Al Naiemi N. , Debets-Ossenkopp Y. J. , Nordmann P. . ( 2010; ). Characterization of DIM-1, an integron-encoded metallo-β-lactamase from a Pseudomonas stutzeri clinical isolate in the Netherlands. . Antimicrob Agents Chemother 54:, 2420–2424. [CrossRef] [PubMed]
    [Google Scholar]
  16. Queenan A. M. , Bush K. . ( 2007; ). Carbapenemases: the versatile β-lactamases. . Clin Microbiol Rev 20:, 440–458. [CrossRef] [PubMed]
    [Google Scholar]
  17. Stokes H. W. , Hall R. M. . ( 1989; ). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. . Mol Microbiol 3:, 1669–1683. [CrossRef] [PubMed]
    [Google Scholar]
  18. Sugimoto T. , Kimura S. , Nakama E. , Chen G. , Fukuchi K. . ( 2010; ). [Increase of metallo-β-lactamase producing bacteria positive cases including Klebsiella pneumoniae in a Japanese university hospital]. . Rinsho Byori 58:, 553–558 (in Japanese).[PubMed]
    [Google Scholar]
  19. Takahashi N. , Yamaguchi F. , Chen G. , Yasuhara T. , Ito R. , Wakuta R. , Fukuchi K. . ( 2010; ). [Analysis of the antibiotic resistant gene in multidrug-resistant Enterobacter cloacae isolated at Showa University Hospital]. . Rinsho Byori 58:, 442–447 (in Japanese).[PubMed]
    [Google Scholar]
  20. Tenover F. C. , Filpula D. , Phillips K. L. , Plorde J. J. . ( 1988; ). Cloning and sequencing of a gene encoding an aminoglycoside 6′-N-acetyltransferase from an R factor of Citrobacter diversus . . J Bacteriol 170:, 471–473.[PubMed]
    [Google Scholar]
  21. Tenover F. C. , Arbeit R. D. , Goering R. V. , Mickelsen P. A. , Murray B. E. , Persing D. H. , Swaminathan B. . ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. . J Clin Microbiol 33:, 2233–2239.[PubMed]
    [Google Scholar]
  22. Walsh T. R. , Toleman M. A. , Poirel L. , Nordmann P. . ( 2005; ). Metallo-β-lactamases: the quiet before the storm?. Clin Microbiol Rev 18:, 306–325. [CrossRef] [PubMed]
    [Google Scholar]
  23. Watanabe M. , Iyobe S. , Inoue M. , Mitsuhashi S. . ( 1991; ). Transferable imipenem resistance in Pseudomonas aeruginosa . . Antimicrob Agents Chemother 35:, 147–151.[PubMed] [CrossRef]
    [Google Scholar]
  24. Yong D. , Toleman M. A. , Giske C. G. , Cho H. S. , Sundman K. , Lee K. , Walsh T. R. . ( 2009; ). Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. . Antimicrob Agents Chemother 53:, 5046–5054. [CrossRef] [PubMed]
    [Google Scholar]
  25. Zhao W.-H. , Hu Z.-Q. . ( 2010; ). β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa . . Crit Rev Microbiol 36:, 245–258. [CrossRef] [PubMed]
    [Google Scholar]
  26. Zhao W.-H. , Hu Z.-Q. . ( 2011a; ). IMP-type metallo-β-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons. . Crit Rev Microbiol 37:, 214–226. [CrossRef] [PubMed]
    [Google Scholar]
  27. Zhao W.-H. , Hu Z.-Q. . ( 2011b; ). Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. . Future Microbiol 6:, 317–333. [CrossRef] [PubMed]
    [Google Scholar]
  28. Zhao W.-H. , Chen G. , Ito R. , Hu Z.-Q. . ( 2009; ). Relevance of resistance levels to carbapenems and integron-borne bla IMP-1, bla IMP-7, bla IMP-10 and bla VIM-2 in clinical isolates of Pseudomonas aeruginosa . . J Med Microbiol 58:, 1080–1085. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.035626-0
Loading
/content/journal/jmm/10.1099/jmm.0.035626-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error