1887

Abstract

Toxigenic culture is considered to be the standard diagnostic method for the detection of infection (CDI). Culture methods are time-consuming and although enzyme immunoassay is rapid and easy to use, it has low sensitivity. In the present study, the AdvanSure CD real-time (RT)-PCR kit (LG Life Sciences) was evaluated for its ability to detect toxin A () and B () genes, simultaneously. A total of 127 fresh diarrhoeal stool specimens, submitted to the clinical microbiology laboratory for culture, were tested. toxins and toxin genes were detected with a VIDAS A&B (VIDAS-CDAB) enzyme-linked fluorescent immunoassay (ELFA) and the AdvanSure RT-PCR kit, respectively, according to the manufacturers’ instructions. Their performance was compared with a standard toxigenic culture method as a reference. The sensitivity, specificity and positive and negative predictive values using the AdvanSure RT-PCR kit were 100 %, 98.3 %, 84.6 % and 100 %, respectively, while those of the VIDAS-CDAB system were 63.6 %, 100 %, 100 % and 96.6 %, respectively. Four / strains of were detected with the AdvanSure RT-PCR kit, which offers comparable sensitivity and specificity to the reference method with a turnaround time of ~3 hours.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.035618-0
2012-02-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/2/274.html?itemId=/content/journal/jmm/10.1099/jmm.0.035618-0&mimeType=html&fmt=ahah

References

  1. Alcalá L., Marín M., Madrid M., Domínguez-García E., Catalán P., Peláez M. T., Sánchez-Somolinos M., Bouza E.. ( 2010;). Comparison of ImmunoCard Toxins A&B and the new semiautomated Vidas Clostridium difficile Toxin A&B tests for diagnosis of C. difficile infection. . J Clin Microbiol 48:, 1014–1015. [CrossRef][PubMed]
    [Google Scholar]
  2. Barbut F., Monot M., Rousseau A., Cavelot S., Simon T., Burghoffer B., Lalande V., Tankovic J., Petit J. C.. & other authors ( 2011;). Rapid diagnosis of Clostridium difficile infection by multiplex real-time PCR. . Eur J Clin Microbiol Infect Dis 30:, 1279–1285. [CrossRef][PubMed]
    [Google Scholar]
  3. Bartlett J. G.. ( 2002;). Clostridium difficile-associated enteric disease. . Curr Infect Dis Rep 4:, 477–483. [CrossRef][PubMed]
    [Google Scholar]
  4. Cohen S. H., Gerding D. N., Johnson S., Kelly C. P., Loo V. G., McDonald L. C., Pepin J., Wilcox M. H..Society for Healthcare Epidemiology of AmericaInfectious Diseases Society of America ( 2010;). Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). . Infect Control Hosp Epidemiol 31:, 431–455. [CrossRef][PubMed]
    [Google Scholar]
  5. Crobach M. J., Dekkers O. M., Wilcox M. H., Kuijper E. J.. ( 2009;). European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). . Clin Microbiol Infect 15:, 1053–1066. [CrossRef][PubMed]
    [Google Scholar]
  6. de Boer R. F., Wijma J. J., Schuurman T., Moedt J., Dijk-Alberts B. G., Ott A., Kooistra-Smid A. M., van Duynhoven Y. T.. ( 2010;). Evaluation of a rapid molecular screening approach for the detection of toxigenic Clostridium difficile in general and subsequent identification of the tcdC Δ117 mutation in human stools. . J Microbiol Methods 83:, 59–65. [CrossRef][PubMed]
    [Google Scholar]
  7. Eastwood K., Else P., Charlett A., Wilcox M.. ( 2009;). Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. . J Clin Microbiol 47:, 3211–3217. [CrossRef][PubMed]
    [Google Scholar]
  8. Huang H., Weintraub A., Fang H., Nord C. E.. ( 2009;). Comparison of a commercial multiplex real-time PCR to the cell cytotoxicity neutralization assay for diagnosis of Clostridium difficile infections. . J Clin Microbiol 47:, 3729–3731. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim H., Riley T. V., Kim M., Kim C. K., Yong D., Lee K., Chong Y., Park J. W.. ( 2008;). Increasing prevalence of toxin A-negative, toxin B-positive isolates of Clostridium difficile in Korea: impact on laboratory diagnosis. . J Clin Microbiol 46:, 1116–1117. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim H., Jeong S. H., Roh K. H., Hong S. G., Kim J. W., Shin M. G., Kim M. N., Shin H. B., Uh Y.. & other authors ( 2010;). Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. . Korean J Lab Med 30:, 491–497. [CrossRef][PubMed]
    [Google Scholar]
  11. Knetsch C. W., Bakker D., de Boer R. F., Sanders I., Hofs S., Kooistra-Smid A. M., Corver J., Eastwood K., Wilcox M. H., Kuijper E. J.. ( 2011;). Comparison of real-time PCR techniques to cytotoxigenic culture methods for diagnosing Clostridium difficile infection. . J Clin Microbiol 49:, 227–231. [CrossRef][PubMed]
    [Google Scholar]
  12. Kuijper E. J., Barbut F., Brazier J. S., Kleinkauf N., Eckmanns T., Lambert M. L., Drudy D., Fitzpatrick F., Wiuff C.. & other authors ( 2008;). Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. . Euro Surveill 13:, 18942.[PubMed]
    [Google Scholar]
  13. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N.. ( 2005;). An epidemic, toxin gene-variant strain of Clostridium difficile. . N Engl J Med 353:, 2433–2441. [CrossRef][PubMed]
    [Google Scholar]
  14. Rupnik M.. ( 2008;). Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. . FEMS Microbiol Rev 32:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  15. Shin B. M., Kuak E. Y.. ( 2006;). [ Characterization of a toxin A-negative, toxin B-positive variant strain of Clostridium difficile. ]. Korean J Lab Med 26:, 27–31 (in Korean with English abstract). [CrossRef][PubMed]
    [Google Scholar]
  16. Shin B. M., Lee E. J., Kuak E. Y., Yoo S. J.. ( 2009;). Comparison of VIDAS CDAB and CDA immunoassay for the detection of Clostridium difficile in a tcdA tcdB+ C. difficile prevalent area. . Anaerobe 15:, 266–269. [CrossRef][PubMed]
    [Google Scholar]
  17. Spigaglia P., Mastrantonio P.. ( 2004;). Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. . J Med Microbiol 53:, 1129–1136. [CrossRef][PubMed]
    [Google Scholar]
  18. Stamper P. D., Alcabasa R., Aird D., Babiker W., Wehrlin J., Ikpeama I., Carroll K. C.. ( 2009;). Comparison of a commercial real-time PCR assay for tcdB detection to a cell culture cytotoxicity assay and toxigenic culture for direct detection of toxin-producing Clostridium difficile in clinical samples. . J Clin Microbiol 47:, 373–378. [CrossRef][PubMed]
    [Google Scholar]
  19. Terhes G., Urbán E., Sóki J., Hamid K. A., Nagy E.. ( 2004;). Community-acquired Clostridium difficile diarrhea caused by binary toxin, toxin A, and toxin B gene-positive isolates in Hungary. . J Clin Microbiol 42:, 4316–4318. [CrossRef][PubMed]
    [Google Scholar]
  20. Ticehurst J. R., Aird D. Z., Dam L. M., Borek A. P., Hargrove J. T., Carroll K. C.. ( 2006;). Effective detection of toxigenic Clostridium difficile by a two-step algorithm including tests for antigen and cytotoxin. . J Clin Microbiol 44:, 1145–1149. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.035618-0
Loading
/content/journal/jmm/10.1099/jmm.0.035618-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error