1887

Abstract

is an emerging tick-borne pathogen that infects humans, domestic animals and wildlife throughout the Holarctic. In the far-western United States, multiple rodent species have been implicated as natural reservoirs for . However, the presence of multiple strains has made it difficult to determine which reservoir hosts pose the greatest risk to humans and domestic animals. Here we characterized three genetic markers (23S–5S rRNA intergenic spacer, and ) from 73 real-time TaqMan PCR-positive strains infecting multiple rodent and reptile species, as well as a dog and a horse, from California. Bayesian and maximum-likelihood phylogenetic analyses of all three genetic markers consistently identified two major clades, one of which consisted of strains infecting woodrats and the other consisting of strains infecting sciurids (chipmunks and squirrels) as well as the dog and horse strains. In addition, analysis of the 23S–5S rRNA spacer region identified two unique and highly dissimilar clades of strains infecting several lizard species. Our findings indicate that multiple unique strains of with distinct host tropisms exist in California. Future epidemiological studies evaluating human and domestic animal risk should incorporate these distinctions.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.034702-0
2012-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/2/204.html?itemId=/content/journal/jmm/10.1099/jmm.0.034702-0&mimeType=html&fmt=ahah

References

  1. Bown K. J. , Lambin X. , Ogden N. H. , Begon M. , Telford G. , Woldehiwet Z. , Birtles R. J. . ( 2009; ). Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. . Emerg Infect Dis 15:, 1948–1954. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brown J. M. , Hedtke S. M. , Lemmon A. R. , Lemmon E. M. . ( 2010; ). When trees grow too long: investigating the causes of highly inaccurate bayesian branch-length estimates. . Syst Biol 59:, 145–161. [CrossRef] [PubMed]
    [Google Scholar]
  3. Castro M. B. , Nicholson W. L. , Kramer V. L. , Childs J. E. . ( 2001; ). Persistent infection in Neotoma fuscipes (Muridae: Sigmodontinae) with Ehrlichia phagocytophila sensu lato. Am J Trop Med Hyg 65:, 261–267.
    [Google Scholar]
  4. Chae J. S. , Foley J. E. , Dumler J. S. , Madigan J. E. . ( 2000; ). Comparison of the nucleotide sequences of 16S rRNA, 444 Ep-ank, and groESL heat shock operon genes in naturally occurring Ehrlichia equi and human granulocytic ehrlichiosis agent isolates from Northern California. . J Clin Microbiol 38:, 1364–1369.
    [Google Scholar]
  5. Chen S.-M. , Dumler J. S. , Bakken J. S. , Walker D. H. . ( 1994; ). Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. . J Clin Microbiol 32:, 589–595.[PubMed]
    [Google Scholar]
  6. Drazenovich N. , Foley J. , Brown R. N. . ( 2006; ). Use of real-time quantitative PCR targeting the msp2 protein gene to identify cryptic Anaplasma phagocytophilum infections in wildlife and domestic animals. . Vector Borne Zoonotic Dis 6:, 83–90. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dumler J. S. , Barbet A. F. , Bekker C. P. J. , Dasch G. A. , Palmer G. H. , Ray S. C. , Rikihisa Y. , Rurangirwa F. R. . ( 2001; ). Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila . . Int J Syst Evol Microbiol 51:, 2145–2165. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dunning Hotopp J. C. , Lin M. , Madupu R. , Crabtree J. , Angiuoli S. V. , Eisen J. A. , Seshadri R. , Ren Q. , Wu M. . & other authors ( 2006; ). Comparative genomics of emerging human ehrlichiosis agents. . PLoS Genet 2:, e21. [CrossRef] [PubMed]
    [Google Scholar]
  9. Edgar R. C. . ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  10. Foggie A. . ( 1949; ). Studies on tick-borne fever in sheep. . J Gen Microbiol 3:, v.[PubMed]
    [Google Scholar]
  11. Foggie A. . ( 1951; ). Studies on the infectious agent of tick-borne fever in sheep. . J Pathol Bacteriol 63:, 1–15. [CrossRef] [PubMed]
    [Google Scholar]
  12. Foggie A. . ( 1962; ). Studies on tick pyaemia and tick-borne fever. In Aspects of Disease Transmission by Ticks, pp. 51–58. . London:: Zoological Society of London;.
  13. Foley J. , Nieto N. C. , Madigan J. , Sykes J. . ( 2008a; ). Possible differential host tropism in Anaplasma phagocytophilum strains in the Western United States. . Ann N Y Acad Sci 1149:, 94–97. [CrossRef] [PubMed]
    [Google Scholar]
  14. Foley J. E. , Clueit S. B. , Brown R. N. . ( 2008b; ). Differential exposure to Anaplasma phagocytophilum in rodent species in northern California. . Vector Borne Zoonotic Dis 8:, 49–56. [CrossRef] [PubMed]
    [Google Scholar]
  15. Foley J. E. , Nieto N. C. , Foley P. . ( 2009a; ). Emergence of tick-borne granulocytic anaplasmosis associated with habitat type and forest change in northern California. . Am J Trop Med Hyg 81:, 1132–1140. [CrossRef] [PubMed]
    [Google Scholar]
  16. Foley J. E. , Nieto N. C. , Massung R. , Barbet A. , Madigan J. , Brown R. N. . ( 2009b; ). Distinct ecologically relevant strains of Anaplasma phagocytophilum . . Emerg Infect Dis 15:, 842–843. [CrossRef] [PubMed]
    [Google Scholar]
  17. Foley J. E. , Rejmanek D. , Fleer K. , Nieto N. . ( 2011; ). Nidicolous ticks of small mammals in Anaplasma phagocytophilum-enzootic sites in northern California. . Ticks Tick Borne Dis 2:, 75–80. [CrossRef] [PubMed]
    [Google Scholar]
  18. Holder M. T. , Sukumaran J. , Lewis P. O. . ( 2008; ). A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. . Syst Biol 57:, 814–821. [CrossRef] [PubMed]
    [Google Scholar]
  19. Larkin M. A. , Blackshields G. , Brown N. P. , Chenna R. , McGettigan P. A. , McWilliam H. , Valentin F. , Wallace I. M. , Wilm A. . & other authors ( 2007; ). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  20. Liz J. S. , Sumner J. W. , Pfister K. , Brossard M. . ( 2002; ). PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). . J Clin Microbiol 40:, 892–897. [CrossRef] [PubMed]
    [Google Scholar]
  21. Macleod J. , Gordon W. . ( 1933; ). Studies in tick-borne fever of sheep. I. Transmission by the tick, Ixodes ricinus, with a description of the disease produced. . Parasitology 25:, 273–285. [CrossRef]
    [Google Scholar]
  22. Madewell B. R. , Gribble D. H. . ( 1982; ). Infection in two dogs with an agent resembling Ehrlichia equi. . J Am Vet Med Assoc 180:, 512–514.
    [Google Scholar]
  23. Massung R. F. , Priestley R. A. , Miller N. J. , Mather T. N. , Levin M. L. . ( 2003; ). Inability of a variant strain of Anaplasma phagocytophilum to infect mice. . J Infect Dis 188:, 1757–1763. [CrossRef] [PubMed]
    [Google Scholar]
  24. Massung R. F. , Levin M. L. , Munderloh U. G. , Silverman D. J. , Lynch M. J. , Gaywee J. K. , Kurtti T. J. . ( 2007; ). Isolation and propagation of the Ap-Variant 1 strain of Anaplasma phagocytophilum in a tick cell line. . J Clin Microbiol 45:, 2138–2143. [CrossRef] [PubMed]
    [Google Scholar]
  25. Morissette E. , Massung R. F. , Foley J. E. , Alleman A. R. , Foley P. , Barbet A. F. . ( 2009; ). Diversity of Anaplasma phagocytophilum strains, USA. . Emerg Infect Dis 15:, 928–931. [CrossRef] [PubMed]
    [Google Scholar]
  26. Nieto N. C. , Foley J. E. . ( 2008; ). Evaluation of squirrels (Rodentia: Sciuridae) as ecologically significant hosts for Anaplasma phagocytophilum in California. . J Med Entomol 45:, 763–769. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nieto N. C. , Foley J. E. . ( 2009; ). Reservoir competence of the redwood chipmunk (Tamias ochrogenys) for Anaplasma phagocytophilum . . Vector Borne Zoonotic Dis 9:, 573–577. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nieto N. C. , Foley J. E. , Bettaso J. , Lane R. S. . ( 2009; ). Reptile infection with Anaplasma phagocytophilum, the causative agent of granulocytic anaplasmosis. . J Parasitol 95:, 1165–1170. [CrossRef] [PubMed]
    [Google Scholar]
  29. Nieto N. C. , Madigan J. E. , Foley J. E. . ( 2010; ). The dusky-footed woodrat (Neotoma fuscipes) is susceptible to infection by Anaplasma phagocytophilum originating from woodrats, horses, and dogs. . J Wildl Dis 46:, 810–817.[PubMed] [CrossRef]
    [Google Scholar]
  30. Paradis E. , Claude J. , Strimmer K. . ( 2004; ). APE: analyses of phylogenetics and evolution in R language. . Bioinformatics 20:, 289–290. [CrossRef] [PubMed]
    [Google Scholar]
  31. Posada D. . ( 2008; ). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pusterla N. , Pusterla J. B. , Braun U. , Lutz H. . ( 1999; ). Experimental cross-infections with Ehrlichia phagocytophila and human granulocytic ehrlichia-like agent in cows and horses. . Vet Rec 145:, 311–314. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rejmanek D. , Nieto N. C. , Barash N. , Foley J. E. . ( 2011; ). Temporal patterns of tick-borne granulocytic anaplasmosis in California. . Ticks Tick Borne Dis 2:, 81–87. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  35. Stamatakis A. . ( 2006; ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef] [PubMed]
    [Google Scholar]
  36. Stannard A. A. , Gribble D. H. , Smith R. S. . ( 1969; ). Equine ehrlichiosis: a disease with similarities to tick-borne fever and bovine petechial fever. . Vet Rec 84:, 149–150. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tyzzer E. . ( 1938; ). Cytoecetes microti, n.g. (n.sp.), a parasite developing in granulocytes and infective for small rodents. . Parasitology 30:, 242–257. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.034702-0
Loading
/content/journal/jmm/10.1099/jmm.0.034702-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error