1887

Abstract

Extra-intestinal pathogenic (ExPEC) causing urinary tract infections (UTIs) most often belong to phylogenetic group B2 and stem from the patient’s own faecal flora. It has been hypothesized that the external reservoir for these uropathogenic in the human intestine may be meat and food-production animals. To investigate such a connection, this study analysed an phylogroup B2 strain collection ( = 161) of geographical and temporally matched isolates, published previously, from UTI patients ( = 52), community-dwelling humans ( = 36), imported ( = 5) and Danish ( = 13) broiler chicken meat, Danish broiler chickens ( = 17), imported ( = 3) and Danish ( = 27) pork, and healthy Danish pigs ( = 8). The isolates were subjected to microarray analysis for 315 virulence genes and variants and 82 antimicrobial resistance genes and variants. In total, 133 different virulence and antimicrobial resistance genes were detected in at least one UTI isolate. Between 66 and 87 of these genes were also detected in meat and animal isolates. Cluster analyses of virulence and resistance gene profiles, respectively, showed that UTI and community-dwelling human isolates most often grouped with meat and animal isolates, indicating genotypic similarity among such isolates. Furthermore, B2 isolates were detected from UTI patients and meat, with indistinguishable gene profiles. A considerable proportion of the animal and meat isolates belonged to the ExPEC pathotype. In conclusion, these findings suggest that B2 from meat and animal origin can be the source of most of the virulence and antimicrobial resistance genes detected in uropathogenic isolates and that there is a general resemblance of animal, meat and UTI based on extended gene profiling. These findings support the hypothesis of a zoonotic link between causing UTIs and from meat and animals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.033993-0
2011-10-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/10/1502.html?itemId=/content/journal/jmm/10.1099/jmm.0.033993-0&mimeType=html&fmt=ahah

References

  1. Bonnet C. , Diarrassouba F. , Brousseau R. , Masson L. , Topp E. , Diarra M. S. . ( 2009; ). Pathotype and antibiotic resistance gene distributions of Escherichia coli isolates from broiler chickens raised on antimicrobial-supplemented diets. . Appl Environ Microbiol 75:, 6955–6962. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bruant G. , Maynard C. , Bekal S. , Gaucher I. , Masson L. , Brousseau R. , Harel J. . ( 2006; ). Development and validation of an oligonucleotide microarray for detection of multiple virulence and antimicrobial resistance genes in Escherichia coli . . Appl Environ Microbiol 72:, 3780–3784. [CrossRef] [PubMed]
    [Google Scholar]
  3. DANMAP (2005). DANMAP 2004. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. http://www.danmap.org
  4. Denamur E. , Elion J. , Picard B. . ( 2000; ). Clonal origin, virulence factors, and virulence. [authors’ reply]. Infect Immun 68:, 424–425.[CrossRef]
    [Google Scholar]
  5. Depardieu F. , Podglajen I. , Leclercq R. , Collatz E. , Courvalin P. . ( 2007; ). Modes and modulations of antibiotic resistance gene expression. . Clin Microbiol Rev 20:, 79–114. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ewers C. , Li G. , Wilking H. , Kiessling S. , Alt K. , Antáo E. M. , Laturnus C. , Diehl I. , Glodde S. et al. ( 2007; ). Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?. Int J Med Microbiol 297:, 163–176. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ewers C. , Antão E. M. , Diehl I. , Philipp H. C. , Wieler L. H. . ( 2009; ). Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. . Appl Environ Microbiol 75:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fernandez-Beros M. E. , Kissel V. , Lior H. , Cabello F. C. . ( 1990; ). Virulence-related genes in ColV plasmids of Escherichia coli isolated from human blood and intestines. . J Clin Microbiol 28:, 742–746.[PubMed]
    [Google Scholar]
  9. Foxman B. . ( 2003; ). Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. . Dis Mon 49:, 53–70. [CrossRef] [PubMed]
    [Google Scholar]
  10. Grape M. , Farra A. , Kronvall G. , Sundström L. . ( 2005; ). Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. . Clin Microbiol Infect 11:, 185–192. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gupta K. . ( 2003; ). Emerging antibiotic resistance in urinary tract pathogens. . Infect Dis Clin North Am 17:, 243–259. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hamelin K. , Bruant G. , El-Shaarawi A. , Hill S. , Edge T. A. , Bekal S. , Fairbrother J. M. , Harel J. , Maynard C. et al. ( 2006; ). A virulence and antimicrobial resistance DNA microarray detects a high frequency of virulence genes in Escherichia coli isolates from Great Lakes recreational waters. . Appl Environ Microbiol 72:, 4200–4206. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hamelin K. , Bruant G. , El-Shaarawi A. , Hill S. , Edge T. A. , Fairbrother J. , Harel J. , Maynard C. , Masson L. , Brousseau R. . ( 2007; ). Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas. . Appl Environ Microbiol 73:, 477–484. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hannah E. L. , Johnson J. R. , Angulo F. , Haddadin B. , Williamson J. , Samore M. H. . ( 2009; ). Molecular analysis of antimicrobial-susceptible and -resistant Escherichia coli from retail meats and human stool and clinical specimens in a rural community setting. . Foodborne Pathog Dis 6:, 285–295. [CrossRef] [PubMed]
    [Google Scholar]
  15. Huang S.-H. , Chen Y.-H. , Fu Q. , Stins M. , Wang Y. , Wass C. , Kim K. S. . ( 1999; ). Identification and characterization of an Escherichia coli invasion gene locus, ibeB, required for penetration of brain microvascular endothelial cells. . Infect Immun 67:, 2103–2109.[PubMed]
    [Google Scholar]
  16. Jakobsen L. , Sandvang D. , Hansen L. H. , Bagger-Skjøt L. , Westh H. , Jørgensen C. , Hansen D. S. , Pedersen B. M. , Monnet D. L. et al. ( 2008; ). Characterisation, dissemination and persistence of gentamicin resistant Escherichia coli from a Danish university hospital to the waste water environment. . Environ Int 34:, 108–115. [CrossRef] [PubMed]
    [Google Scholar]
  17. Jakobsen L. , Hammerum A. M. , Frimodt-Møller N. . ( 2010a; ). Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): evidence that UTI is a zoonosis. . J Clin Microbiol 48:, 2978–2980. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jakobsen L. , Spangholm D. J. , Pedersen K. , Jensen L. B. , Emborg H. D. , Agersø Y. , Aarestrup F. M. , Hammerum A. M. , Frimodt-Møller N. . ( 2010b; ). Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. . Int J Food Microbiol 142:, 264–272. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jakobsen L. , Kurbasic A. , Skjøt-Rasmussen L. , Ejrnaes K. , Porsbo L. J. , Pedersen K. , Jensen L. B. , Emborg H.-D. , Agersø Y. et al. ( 2010; c). Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. . Foodborne Pathog Dis 7:, 537–547. [CrossRef] [PubMed]
    [Google Scholar]
  20. Johnson J. R. . ( 1991; ). Virulence factors in Escherichia coli urinary tract infection. . Clin Microbiol Rev 4:, 80–128.[PubMed]
    [Google Scholar]
  21. Johnson J. R. . ( 2003; ). Microbial virulence determinants and the pathogenesis of urinary tract infection. . Infect Dis Clin North Am 17:, 261–278, viii. [CrossRef] [PubMed]
    [Google Scholar]
  22. Johnson J. R. , Kuskowski M. . ( 2000; ). Clonal origin, virulence factors, and virulence [letter to the Editor]. . Infect Immun 68:, 424–425. [CrossRef] [PubMed]
    [Google Scholar]
  23. Johnson J. R. , Russo T. A. . ( 2002; ). Extraintestinal pathogenic Escherichia coli: “The other bad E. coli”. . J Lab Clin Med 139:, 155–162. [CrossRef] [PubMed]
    [Google Scholar]
  24. Johnson J. R. , Kuskowski M. A. , Gajewski A. , Soto S. , Horcajada J. P. , Jimenez de Anta M. T. , Vila J. . ( 2005a; ). Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. . J Infect Dis 191:, 46–50. [CrossRef] [PubMed]
    [Google Scholar]
  25. Johnson J. R. , Kuskowski M. A. , Smith K. , O’Bryan T. T. , Tatini S. . ( 2005b; ). Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. . J Infect Dis 191:, 1040–1049. [CrossRef] [PubMed]
    [Google Scholar]
  26. Johnson J. R. , Owens K. , Gajewski A. , Kuskowski M. A. . ( 2005; c). Bacterial characteristics in relation to clinical source of Escherichia coli isolates from women with acute cystitis or pyelonephritis and uninfected women. . J Clin Microbiol 43:, 6064–6072. [CrossRef] [PubMed]
    [Google Scholar]
  27. Johnson J. R. , McCabe J. S. , White D. G. , Johnston B. , Kuskowski M. A. , McDermott P. . ( 2009; ). Molecular analysis of Escherichia coli from retail meats (2002–2004) from the United States national antimicrobial resistance monitoring system. . Clin Infect Dis 49:, 195–201. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kerrn M. B. , Klemmensen T. , Frimodt-Møller N. , Espersen F. . ( 2002; ). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. . J Antimicrob Chemother 50:, 513–516. [CrossRef] [PubMed]
    [Google Scholar]
  29. Maynard C. , Bekal S. , Sanschagrin F. , Levesque R. C. , Brousseau R. , Masson L. , Larivière S. , Harel J. . ( 2004; ). Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. . J Clin Microbiol 42:, 5444–5452. [CrossRef] [PubMed]
    [Google Scholar]
  30. Moreno E. , Andreu A. , Pigrau C. , Kuskowski M. A. , Johnson J. R. , Prats G. . ( 2008; ). Relationship between Escherichia coli strains causing acute cystitis in women and the fecal E. coli population of the host. . J Clin Microbiol 46:, 2529–2534. [CrossRef] [PubMed]
    [Google Scholar]
  31. Moulin-Schouleur M. , Répérant M. , Laurent S. , Brée A. , Mignon-Grasteau S. , Germon P. , Rasschaert D. , Schouler C. . ( 2007; ). Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. . J Clin Microbiol 45:, 3366–3376. [CrossRef] [PubMed]
    [Google Scholar]
  32. Oteo J. , Diestra K. , Juan C. , Bautista V. , Novais A. , Pérez-Vázquez M. , Moyá B. , Miró E. , Coque T. M. et al. ( 2009; ). Extended-spectrum β-lactamase-producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10 complex/A, ST23 complex/A and ST131/B2. . Int J Antimicrob Agents 34:, 173–176. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ramchandani M. , Manges A. R. , DebRoy C. , Smith S. P. , Johnson J. R. , Riley L. W. . ( 2005; ). Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli . . Clin Infect Dis 40:, 251–257. [CrossRef] [PubMed]
    [Google Scholar]
  34. Restieri C. , Garriss G. , Locas M. C. , Dozois C. M. . ( 2007; ). Autotransporter-encoding sequences are phylogenetically distributed among Escherichia coli clinical isolates and reference strains. . Appl Environ Microbiol 73:, 1553–1562. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rodriguez-Siek K. E. , Giddings C. W. , Doetkott C. , Johnson T. J. , Fakhr M. K. , Nolan L. K. . ( 2005; ). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. . Microbiology 151:, 2097–2110. [CrossRef] [PubMed]
    [Google Scholar]
  36. Russo T. A. , McFadden C. D. , Carlino-MacDonald U. B. , Beanan J. M. , Barnard T. J. , Johnson J. R. . ( 2002; ). IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli . . Infect Immun 70:, 7156–7160. [CrossRef] [PubMed]
    [Google Scholar]
  37. Song S. , Lee E. Y. , Koh E.-M. , Ha H. S. , Jeong H. J. , Bae I. K. , Jeong S. H. . ( 2009; ). Antibiotic resistance mechanisms of Escherichia coli isolates from urinary specimens. . Korean J Lab Med 29:, 17–24. [CrossRef] [PubMed]
    [Google Scholar]
  38. Takahashi A. , Kanamaru S. , Kurazono H. , Kunishima Y. , Tsukamoto T. , Ogawa O. , Yamamoto S. . ( 2006; ). Escherichia coli isolates associated with uncomplicated and complicated cystitis and asymptomatic bacteriuria possess similar phylogenies, virulence genes, and O-serogroup profiles. . J Clin Microbiol 44:, 4589–4592. [CrossRef] [PubMed]
    [Google Scholar]
  39. Vann W. F. , Daines D. A. , Murkin A. S. , Tanner M. E. , Chaffin D. O. , Rubens C. E. , Vionnet J. , Silver R. P. . ( 2004; ). The NeuC protein of Escherichia coli K1 is a UDP N-acetylglucosamine 2-epimerase. . J Bacteriol 186:, 706–712. [CrossRef] [PubMed]
    [Google Scholar]
  40. Vincent C. , Boerlin P. , Daignault D. , Dozois C. M. , Dutil L. , Galanakis C. , Reid-Smith R. J. , Tellier P. P. , Tellis P. A. et al. ( 2010; ). Food reservoir for Escherichia coli causing urinary tract infections. . Emerg Infect Dis 16:, 88–95. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wiles T. J. , Kulesus R. R. , Mulvey M. A. . ( 2008; ). Origins and virulence mechanisms of uropathogenic Escherichia coli . . Exp Mol Pathol 85:, 11–19. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.033993-0
Loading
/content/journal/jmm/10.1099/jmm.0.033993-0
Loading

Data & Media loading...

Supplements

Virulence ( =315) and control ( =9) oligonucleotides included in the microarray [ Excel file] (132 KB)

EXCEL

Antimicrobial resistance oligonucleotide probes ( =82) included in the microarray prototype [ Excel file] (81 KB)

EXCEL

Summary of the frequency of the 82 resistance and 315 virulence genes investigated among B2 UTI isolates among isolates taken from UTI patients, community-dwelling humans, imported and Danish broiler chicken meat, broiler chickens, imported and Danish pork, and pigs [ Excel file] (111 KB)

EXCEL

Click here to download a ZIP file(84 KB) containing all supplementary tables for this paper.

ARCHIVE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error