1887
Preview this article:
Zoom in
Zoomout

A persistent problem, Page 1 of 1

| /docserver/preview/fulltext/jmm/60/3/267-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.029967-0
2011-03-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/3/267.html?itemId=/content/journal/jmm/10.1099/jmm.0.029967-0&mimeType=html&fmt=ahah

References

  1. De Groote, V. N., Fauvart, M., Kint, C. I., Verstraeten, N., Jans, A., Cornelis, P. & Michiels, J. ( 2011; ). Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J Med Microbiol 60, 329–336.[CrossRef]
    [Google Scholar]
  2. Dörr, T., Lewis, K. & Vulić, M. ( 2009; ). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5, e1000760 [CrossRef]
    [Google Scholar]
  3. Dörr, T., Vulić, M. & Lewis, K. ( 2010; ). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8, e1000317.[CrossRef]
    [Google Scholar]
  4. Fung, D. K. C., Chan, E. W. C., Chin, M. L. & Chan, R. C. Y. ( 2010; ). Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob Agents Chemother 54, 1082–1093.[CrossRef]
    [Google Scholar]
  5. Hansen, S., Lewis, K. & Vulić, M. ( 2008; ). Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52, 2718–2726.[CrossRef]
    [Google Scholar]
  6. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. ( 2004a; ). Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230, 13–18.[CrossRef]
    [Google Scholar]
  7. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. ( 2004b; ). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186, 8172–8180.[CrossRef]
    [Google Scholar]
  8. Lewis, K. ( 2007; ). Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5, 48–56.[CrossRef]
    [Google Scholar]
  9. Lewis, K. ( 2010; ). Persister cells. Annu Rev Microbiol 64, 357–372.[CrossRef]
    [Google Scholar]
  10. Mulcahy, L. R., Burns, J. L., Lory, S. & Lewis, K. ( 2010; ). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192, 6191–6199.[CrossRef]
    [Google Scholar]
  11. Smith, P. A. & Romesberg, F. E. ( 2007; ). Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol 3, 549–556.[CrossRef]
    [Google Scholar]
  12. Spoering, A. L. & Lewis, K. ( 2001; ). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183, 6746–6751.[CrossRef]
    [Google Scholar]
  13. Spoering, A. L., Vulić, M. & Lewis, K. ( 2006; ). GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188, 5136–5144.[CrossRef]
    [Google Scholar]
  14. avier, K. B., Kossmann, M., Santos, H. & Boos, W. ( 1995; ). Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal Pi during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system. J Bacteriol 177, 699–704.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.029967-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error