1887

Abstract

Risk factors for invasive infections by heterogeneous vancomycin-intermediate (hVISA) may involve resistance to opsonophagocytosis and bacterial killing. hVISA strains typically have a thickened cell wall with altered peptidoglycan cross-linking. To determine whether hVISA may be endowed with an increased resistance to phagocytosis, this study assessed the characteristics of uptake and killing by granulocytes of three hVISA strains. All isolates were analysed by multilocus sequence typing and staphylococcal chromosome cassette typing. One of the strains belonged to the Hungarian meticillin-resistant (MRSA) clone ST239-MRSA-III and the other two to the New York/Japan MRSA clone ST5-MRSA-II. In the presence of 10 % normal serum, the extent of phagocytosis and killing by blood granulocytes was equivalent for hVISA, MRSA and meticillin-sensitive (MSSA) strains. Using granulocytes and serum from one patient who survived hVISA infection, the rate of phagocytosis and killing was also found to be comparable to that by control cells in the presence of 10 % serum. However, phagocytosis and killing of hVISA and MRSA (ATCC 25923) strains by normal granulocytes was markedly decreased in the presence of low concentrations (1 and 2.5 %) of serum from the patient who survived hVISA infection compared with that found with normal human serum. These data suggest that hVISA and MRSA isolates may be more resistant to opsonophagocytosis and bacterial killing than MSSA isolates, at least in some cases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.029421-0
2012-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/2/198.html?itemId=/content/journal/jmm/10.1099/jmm.0.029421-0&mimeType=html&fmt=ahah

References

  1. Boelaert J. R. . ( 1994; ). Staphylococcus aureus infection in haemodialysis patients. Mupirocin as a topical strategy against nasal carriage: a review. . J Chemother 6: (Suppl. 2), 19–24.[PubMed]
    [Google Scholar]
  2. Brown D. F. J. , Edwards D. I. , Hawkey P. M. , Morrison D. , Ridgway G. L. , Towner K. J. , Wren M. W. . on behalf of the Joint Working Party of the British Society for Antimicrobial Chemotherapy, Hospital Infection Society and Infection Control Nurses Association ( 2005; ). Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). . J Antimicrob Chemother 56:, 1000–1018. [CrossRef] [PubMed]
    [Google Scholar]
  3. CDC ( 1997; ). Staphylococcus aureus with reduced susceptibility to vancomycin – United States, 1997. . MMWR Morb Mortal Wkly Rep 46:, 765–766.
    [Google Scholar]
  4. CLSI ( 2009; ). Performance Standards for Antimicrobial Susceptibility Testing; 19th Informational Supplement. M100-S19. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  5. Enright M. C. , Day N. P. , Davies C. E. , Peacock S. J. , Spratt B. G. . ( 2000; ). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus . . J Clin Microbiol 38:, 1008–1015.[PubMed]
    [Google Scholar]
  6. Garnier F. , Chainier D. , Walsh T. , Karlsson A. , Bolmström A. , Grelaud C. , Mounier M. , Denis F. , Ploy M. C. . ( 2006; ). A 1 year surveillance study of glycopeptide-intermediate Staphylococcus aureus strains in a French hospital. . J Antimicrob Chemother 57:, 146–149. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gemmell C. G. . ( 2004; ). Glycopeptide resistance in Staphylococcus aureus: is it a real threat?. J Infect Chemother 10:, 69–75. [CrossRef] [PubMed]
    [Google Scholar]
  8. Goldblum S. E. , Reed W. P. , Ulrich J. A. , Goldman R. S. . ( 1978; ). Staphylococcal carriage and infections in hemodialysis patients. . Dial Transplant 7:, 1140–1163.
    [Google Scholar]
  9. Gould I. M. . ( 2008; ). Clinical relevance of increasing glycopeptide MICs against Staphylococcus aureus . . Int J Antimicrob Agents 31: (Suppl. 2), 1–9. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hiramatsu K. , Aritaka N. , Hanaki H. , Kawasaki S. , Hosoda Y. , Hori S. , Fukuchi Y. , Kobayashi I. . ( 1997a; ). Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. . Lancet 350:, 1670–1673. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hiramatsu K. , Hanaki H. , Ino T. , Yabuta K. , Oguri T. , Tenover F. C. . ( 1997b; ). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. . J Antimicrob Chemother 40:, 135–136. [CrossRef] [PubMed]
    [Google Scholar]
  12. Jones R. N. . ( 2006; ). Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. . Clin Infect Dis 42: (Suppl. 1), S13–S24. [CrossRef] [PubMed]
    [Google Scholar]
  13. Maródi L. , Leijh P. C. J. , Van Furth R. . ( 1983; ). A micromethod for the separate evaluation of phagocytosis and intracellular killing of Staphylococcus aureus by human monocytes and granulocytes. . J Immunol Methods 57:, 353–361. [CrossRef] [PubMed]
    [Google Scholar]
  14. Maródi L. , Leijh P. C. , van Furth R. . ( 1984; ). Characteristics and functional capacities of human cord blood granulocytes and monocytes. . Pediatr Res 18:, 1127–1131. [CrossRef] [PubMed]
    [Google Scholar]
  15. Maródi L. , Schreiber S. , Anderson D. C. , MacDermott R. P. , Korchak H. M. , Johnston R. B. Jr . ( 1993; ). Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. . J Clin Invest 91:, 2596–2601. [CrossRef] [PubMed]
    [Google Scholar]
  16. Maródi L. , Káposzta R. , Tóth J. , László A. . ( 1995; ). Impaired microbicidal capacity of mononuclear phagocytes from patients with type I Gaucher disease: partial correction by enzyme replacement therapy. . Blood 86:, 4645–4649.[PubMed]
    [Google Scholar]
  17. Maródi L. , Tournay C. , Káposzta R. , Johnston R. B. Jr , Moguilevsky N. . ( 1998; ). Augmentation of human macrophage candidacidal capacity by recombinant human myeloperoxidase and granulocyte–macrophage colony-stimulating factor. . Infect Immun 66:, 2750–2754.[PubMed]
    [Google Scholar]
  18. Maródi L. , Káposzta R. , Nemes E. . ( 2000; ). Survival of group B streptococcus type III in mononuclear phagocytes: differential regulation of bacterial killing in cord macrophages by human recombinant gamma interferon and granulocyte–macrophage colony-stimulating factor. . Infect Immun 68:, 2167–2170. [CrossRef] [PubMed]
    [Google Scholar]
  19. Maródi L. , Goda K. , Palicz A. , Szabó G. . ( 2001; ). Cytokine receptor signalling in neonatal macrophages: defective STAT-1 phosphorylation in response to stimulation with IFN-γ. . Clin Exp Immunol 126:, 456–460. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oliveira D. C. , de Lencastre H. . ( 2002; ). Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus . . Antimicrob Agents Chemother 46:, 2155–2161. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ploy M. C. , Grélaud C. , Martin C. L. , de Lumley L. , Denis F. . ( 1998; ). First clinical isolate of vancomycin-intermediate Staphylococcus aureus in a French hospital. . Lancet 351:, 1212. [CrossRef] [PubMed]
    [Google Scholar]
  22. Sakoulas G. , Moellering R. C. Jr , Eliopoulos G. M. . ( 2006; ). Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy. . Clin Infect Dis 42: (Suppl. 1), S40–S50. [CrossRef] [PubMed]
    [Google Scholar]
  23. Song J.-H. , Hiramatsu K. , Suh J. Y. , Ko K. S. , Ito T. , Kapi M. , Kiem S. , Kim Y.-S. , Oh W. S. et al. ( 2004; & other authors ( Emergence in Asian countries of Staphylococcus aureus with reduced susceptibility to vancomycin. . Antimicrob Agents Chemother 48:, 4926–4928. [CrossRef] [PubMed]
    [Google Scholar]
  24. Szabó J. . ( 2009; ). hVISA/VISA: diagnostic and therapeutic problems. . Expert Rev Anti Infect Ther 7:, 1–3. [CrossRef] [PubMed]
    [Google Scholar]
  25. Szabó J. , Dombrádi Z. , Dobay O. , Orosi P. , Kónya J. , Nagy K. , Rozgonyi F. . ( 2009; ). Phenotypic and genetic characterisation of methicillin-resistant Staphylococcus aureus strains isolated from the university hospitals of Debrecen. . Eur J Clin Microbiol Infect Dis 28:, 129–136. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tóth Á. , Kispál G. , Ungvári E. , Violka M. , Szeberin Z. , Pászti J. , Molnár K. , Gacs M. , Füzi M. . ( 2008; ). First report of heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) causing fatal infection in Hungary. . J Chemother 20:, 655–656.[PubMed] [CrossRef]
    [Google Scholar]
  27. Walsh T. R. , Bolmström A. , Qwärnström A. , Ho P. , Wootton M. , Howe R. A. , MacGowan A. P. , Diekema D. . ( 2001; ). Evaluation of current methods for detection of staphylococci with reduced susceptibility to glycopeptides. . J Clin Microbiol 39:, 2439–2444. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.029421-0
Loading
/content/journal/jmm/10.1099/jmm.0.029421-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error