1887

Abstract

is an important opportunistic human fungal pathogen. Infections caused by are related to the formation of a biofilm. The biofilm enhances the resistance of the defence system, increases its resistance to antifungal drugs and induces increased drug tolerance, making clinical care more challenging. The activity of -2-dodecenoic acid (BDSF; a diffusible signal factor from ) and -2-dodecenoic acid (-BDSF) against growth, germ-tube germination and biofilm formation was estimated by absorbance measurements and microscopic assessments. biofilms were prepared using a static microtitre plate model. Quantitative analysis of biofilm formation was performed using a 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay to evaluate the effect of different concentrations of BDSF and -BDSF at different stages of biofilm formation. Reductions in biofilm structure and formation were visualized by inverted microscopy. Real-time RT-PCR was employed to estimate the mRNA expression levels of the hyphae-specific genes and . It was found that 30 µM of either BDSF or -BDSF reduced germ-tube formation by approximately 70 % without inhibiting yeast growth. Yeast growth was strongly repressed by the exogenous addition of 300 µM BDSF and -BDSF at 0 and 1 h after cell attachment, with biofilm formation being reduced by approximately 90 and 60 %, respectively. BDSF and -BDSF were more effective against biofilm formation than farnesol and the diffusible signal factor -11-methyl-2-dodecenoic acid. None of the four drugs was able to destroy pre-formed biofilms. Real-time RT-PCR analysis showed that was downregulated by approximately 90 % and was downregulated by 70–80 % by 60 µM BDSF and -BDSF, implying that BDSF and -BDSF block biofilm formation by interfering with the morphological switch. These results suggest that BDSF and -BDSF are potentially useful therapeutic agents worthy of further study.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.029058-0
2011-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/11/1643.html?itemId=/content/journal/jmm/10.1099/jmm.0.029058-0&mimeType=html&fmt=ahah

References

  1. Argimón S., Wishart J. A., Leng R., Macaskill S., Mavor A., Alexandris T., Nicholls S., Knight A. W., Enjalbert B. et al. ( 2007;). Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. . Eukaryot Cell 6:, 682–692. [CrossRef][PubMed]
    [Google Scholar]
  2. Boon C., Deng Y., Wang L.-H., He Y., Xu J.-L., Fan Y., Pan S. Q., Zhang L.-H.. ( 2008;). A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. . ISME J 2:, 27–36. [CrossRef][PubMed]
    [Google Scholar]
  3. Borecká-Melkusová S., Moran G. P., Sullivan D. J., Kucharíková S., Chorvát D. Jr, Bujdáková H.. ( 2009;). The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. . Mycoses 52:, 118–128. [CrossRef][PubMed]
    [Google Scholar]
  4. Brown A. J. P., Gow N. A. R.. ( 1999;). Regulatory networks controlling Candida albicans morphogenesis. . Trends Microbiol 7:, 333–338. [CrossRef][PubMed]
    [Google Scholar]
  5. Brown D. H. Jr, Giusani A. D., Chen X., Kumamoto C. A.. ( 1999;). Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. . Mol Microbiol 34:, 651–662. [CrossRef][PubMed]
    [Google Scholar]
  6. Cao Y.-Y., Cao Y.-B., Xu Z., Ying K., Li Y., Xie Y., Zhu Z.-Y., Chen W.-S., Jiang Y.-Y.. ( 2005;). cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. . Antimicrob Agents Chemother 49:, 584–589. [CrossRef][PubMed]
    [Google Scholar]
  7. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A.. ( 2001;). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. . J Bacteriol 183:, 5385–5394. [CrossRef][PubMed]
    [Google Scholar]
  8. Costerton J. W.. ( 1995;). Overview of microbial biofilms. . J Ind Microbiol 15:, 137–140. [CrossRef][PubMed]
    [Google Scholar]
  9. da Silva W. J., Seneviratne J., Parahitiyawa N., Rosa E. A. R., Samaranayake L. P., Del Bel Cury A. A.. ( 2008;). Improvement of XTT assay performance for studies involving Candida albicans biofilms. . Braz Dent J 19:, 364–369.[PubMed]
    [Google Scholar]
  10. Davies D. G., Marques C. N. H.. ( 2009;). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. . J Bacteriol 191:, 1393–1403. [CrossRef][PubMed]
    [Google Scholar]
  11. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P.. ( 1998;). The involvement of cell-to-cell signals in the development of a bacterial biofilm. . Science 280:, 295–298. [CrossRef][PubMed]
    [Google Scholar]
  12. Douglas L. J.. ( 2003;). Candida biofilms and their role in infection. . Trends Microbiol 11:, 30–36. [CrossRef][PubMed]
    [Google Scholar]
  13. Green C. B., Cheng G., Chandra J., Mukherjee P., Ghannoum M. A., Hoyer L. L.. ( 2004;). RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. . Microbiology 150:, 267–275. [CrossRef][PubMed]
    [Google Scholar]
  14. Henriques M., Martins M., Azeredo J., Oliveira R.. ( 2007;). Effect of farnesol on Candida dubliniensis morphogenesis. . Lett Appl Microbiol 44:, 199–205. [CrossRef][PubMed]
    [Google Scholar]
  15. Hogan D. A., Vik A., Kolter R.. ( 2004;). A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. . Mol Microbiol 54:, 1212–1223. [CrossRef][PubMed]
    [Google Scholar]
  16. Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W.. ( 2001;). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. . Appl Environ Microbiol 67:, 2982–2992. [CrossRef][PubMed]
    [Google Scholar]
  17. Hoyer L. L., Green C. B., Oh S.-H., Zhao X.. ( 2008;). Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. . Med Mycol 46:, 1–15. [CrossRef][PubMed]
    [Google Scholar]
  18. Kuhn D. M., Balkis M., Chandra J., Mukherjee P. K., Ghannoum M. A.. ( 2003;). Uses and limitations of the XTT assay in studies of Candida growth and metabolism. . J Clin Microbiol 41:, 506–508. [CrossRef][PubMed]
    [Google Scholar]
  19. Kumamoto C. A.. ( 2002;). Candida biofilms. . Curr Opin Microbiol 5:, 608–611. [CrossRef][PubMed]
    [Google Scholar]
  20. Lo H.-J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R.. ( 1997;). Nonfilamentous C. albicans mutants are avirulent. . Cell 90:, 939–949. [CrossRef][PubMed]
    [Google Scholar]
  21. Miller M. B., Bassler B. L.. ( 2001;). Quorum sensing in bacteria. . Annu Rev Microbiol 55:, 165–199. [CrossRef][PubMed]
    [Google Scholar]
  22. Molero G., Díez-Orejas R., Navarro-García F., Monteoliva L., Pla J., Gil C., Sánchez-Pérez M., Nombela C.. ( 1998;). Candida albicans: genetics, dimorphism and pathogenicity. . Int Microbiol 1:, 95–106.[PubMed]
    [Google Scholar]
  23. Parsek M. R., Greenberg E. P.. ( 1999;). Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. . Methods Enzymol 310:, 43–55. [CrossRef][PubMed]
    [Google Scholar]
  24. Pierce C. G., Thomas D. P., López-Ribot J. L.. ( 2009;). Effect of tunicamycin on Candida albicans biofilm formation and maintenance. . J Antimicrob Chemother 63:, 473–479. [CrossRef][PubMed]
    [Google Scholar]
  25. Ramage G., Wickes B. L., Lopez-Ribot J. L.. ( 2001a;). Biofilms of Candida albicans and their associated resistance to antifungal agents. . Am Clin Lab 20:, 42–44.[PubMed]
    [Google Scholar]
  26. Ramage G., Vandewalle K., Wickes B. L., López-Ribot J. L.. ( 2001b;). Characteristics of biofilm formation by Candida albicans. . Rev Iberoam Micol 18:, 163–170.[PubMed]
    [Google Scholar]
  27. Ramage G., Saville S. P., Wickes B. L., López-Ribot J. L.. ( 2002a;). Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. . Appl Environ Microbiol 68:, 5459–5463. [CrossRef][PubMed]
    [Google Scholar]
  28. Ramage G., Bachmann S., Patterson T. F., Wickes B. L., López-Ribot J. L.. ( 2002b;). Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. . J Antimicrob Chemother 49:, 973–980. [CrossRef][PubMed]
    [Google Scholar]
  29. Sharkey L. L., McNemar M. D., Saporito-Irwin S. M., Sypherd P. S., Fonzi W. A.. ( 1999;). HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. . J Bacteriol 181:, 5273–5279.[PubMed]
    [Google Scholar]
  30. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P.. ( 2000;). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. . Nature 407:, 762–764. [CrossRef][PubMed]
    [Google Scholar]
  31. Staab J. F., Sundstrom P.. ( 1998;). Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. . Yeast 14:, 681–686. [CrossRef][PubMed]
    [Google Scholar]
  32. Staab J. F., Bahn Y.-S., Tai C.-H., Cook P. F., Sundstrom P.. ( 2004;). Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. . J Biol Chem 279:, 40737–40747. [CrossRef][PubMed]
    [Google Scholar]
  33. Stephens C.. ( 2002;). Microbiology: breaking down biofilms. . Curr Biol 12:, R132–R134. [CrossRef][PubMed]
    [Google Scholar]
  34. Wang L. H.. ( 2006;). Inhibitors of Yeast Filamentous Growth and Method of Their Manufacture. Singapore:: USPA Publication, Agency for Science, Technology and Research;.
    [Google Scholar]
  35. Wang L.-H., He Y., Gao Y., Wu J. E., Dong Y.-H., He C., Wang S. X., Weng L.-X., Xu J.-L. et al. ( 2004;). A bacterial cell–cell communication signal with cross-kingdom structural analogues. . Mol Microbiol 51:, 903–912. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.029058-0
Loading
/content/journal/jmm/10.1099/jmm.0.029058-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error