Skip to content
1887

Abstract

is an important opportunistic human fungal pathogen. Infections caused by are related to the formation of a biofilm. The biofilm enhances the resistance of the defence system, increases its resistance to antifungal drugs and induces increased drug tolerance, making clinical care more challenging. The activity of -2-dodecenoic acid (BDSF; a diffusible signal factor from ) and -2-dodecenoic acid (-BDSF) against growth, germ-tube germination and biofilm formation was estimated by absorbance measurements and microscopic assessments. biofilms were prepared using a static microtitre plate model. Quantitative analysis of biofilm formation was performed using a 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay to evaluate the effect of different concentrations of BDSF and -BDSF at different stages of biofilm formation. Reductions in biofilm structure and formation were visualized by inverted microscopy. Real-time RT-PCR was employed to estimate the mRNA expression levels of the hyphae-specific genes and . It was found that 30 µM of either BDSF or -BDSF reduced germ-tube formation by approximately 70 % without inhibiting yeast growth. Yeast growth was strongly repressed by the exogenous addition of 300 µM BDSF and -BDSF at 0 and 1 h after cell attachment, with biofilm formation being reduced by approximately 90 and 60 %, respectively. BDSF and -BDSF were more effective against biofilm formation than farnesol and the diffusible signal factor -11-methyl-2-dodecenoic acid. None of the four drugs was able to destroy pre-formed biofilms. Real-time RT-PCR analysis showed that was downregulated by approximately 90 % and was downregulated by 70–80 % by 60 µM BDSF and -BDSF, implying that BDSF and -BDSF block biofilm formation by interfering with the morphological switch. These results suggest that BDSF and -BDSF are potentially useful therapeutic agents worthy of further study.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.029058-0
2011-11-01
2025-01-24
Loading full text...

Full text loading...

References

  1. Argimón S., Wishart J. A., Leng R., Macaskill S., Mavor A., Alexandris T., Nicholls S., Knight A. W., Enjalbert B. et al. 2007; Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell 6:682–692 [View Article][PubMed]
    [Google Scholar]
  2. Boon C., Deng Y., Wang L.-H., He Y., Xu J.-L., Fan Y., Pan S. Q., Zhang L.-H. 2008; A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36 [View Article][PubMed]
    [Google Scholar]
  3. Borecká-Melkusová S., Moran G. P., Sullivan D. J., Kucharíková S., Chorvát D. Jr, Bujdáková H. 2009; The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses 52:118–128 [View Article][PubMed]
    [Google Scholar]
  4. Brown A. J. P., Gow N. A. R. 1999; Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338 [View Article][PubMed]
    [Google Scholar]
  5. Brown D. H. Jr, Giusani A. D., Chen X., Kumamoto C. A. 1999; Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34:651–662 [View Article][PubMed]
    [Google Scholar]
  6. Cao Y.-Y., Cao Y.-B., Xu Z., Ying K., Li Y., Xie Y., Zhu Z.-Y., Chen W.-S., Jiang Y.-Y. 2005; cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589 [View Article][PubMed]
    [Google Scholar]
  7. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A. 2001; Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394 [View Article][PubMed]
    [Google Scholar]
  8. Costerton J. W. 1995; Overview of microbial biofilms. J Ind Microbiol 15:137–140 [View Article][PubMed]
    [Google Scholar]
  9. da Silva W. J., Seneviratne J., Parahitiyawa N., Rosa E. A. R., Samaranayake L. P., Del Bel Cury A. A. 2008; Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J 19:364–369[PubMed]
    [Google Scholar]
  10. Davies D. G., Marques C. N. H. 2009; A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403 [View Article][PubMed]
    [Google Scholar]
  11. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [View Article][PubMed]
    [Google Scholar]
  12. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36 [View Article][PubMed]
    [Google Scholar]
  13. Green C. B., Cheng G., Chandra J., Mukherjee P., Ghannoum M. A., Hoyer L. L. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275 [View Article][PubMed]
    [Google Scholar]
  14. Henriques M., Martins M., Azeredo J., Oliveira R. 2007; Effect of farnesol on Candida dubliniensis morphogenesis. Lett Appl Microbiol 44:199–205 [View Article][PubMed]
    [Google Scholar]
  15. Hogan D. A., Vik A., Kolter R. 2004; A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223 [View Article][PubMed]
    [Google Scholar]
  16. Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W. 2001; Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992 [View Article][PubMed]
    [Google Scholar]
  17. Hoyer L. L., Green C. B., Oh S.-H., Zhao X. 2008; Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol 46:1–15 [View Article][PubMed]
    [Google Scholar]
  18. Kuhn D. M., Balkis M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2003; Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41:506–508 [View Article][PubMed]
    [Google Scholar]
  19. Kumamoto C. A. 2002; Candida biofilms. Curr Opin Microbiol 5:608–611 [View Article][PubMed]
    [Google Scholar]
  20. Lo H.-J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [View Article][PubMed]
    [Google Scholar]
  21. Miller M. B., Bassler B. L. 2001; Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199 [View Article][PubMed]
    [Google Scholar]
  22. Molero G., Díez-Orejas R., Navarro-García F., Monteoliva L., Pla J., Gil C., Sánchez-Pérez M., Nombela C. 1998; Candida albicans: genetics, dimorphism and pathogenicity. Int Microbiol 1:95–106[PubMed]
    [Google Scholar]
  23. Parsek M. R., Greenberg E. P. 1999; Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods Enzymol 310:43–55 [View Article][PubMed]
    [Google Scholar]
  24. Pierce C. G., Thomas D. P., López-Ribot J. L. 2009; Effect of tunicamycin on Candida albicans biofilm formation and maintenance. J Antimicrob Chemother 63:473–479 [View Article][PubMed]
    [Google Scholar]
  25. Ramage G., Wickes B. L., Lopez-Ribot J. L. 2001a; Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab 20:42–44[PubMed]
    [Google Scholar]
  26. Ramage G., Vandewalle K., Wickes B. L., López-Ribot J. L. 2001b; Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18:163–170[PubMed]
    [Google Scholar]
  27. Ramage G., Saville S. P., Wickes B. L., López-Ribot J. L. 2002a; Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463 [View Article][PubMed]
    [Google Scholar]
  28. Ramage G., Bachmann S., Patterson T. F., Wickes B. L., López-Ribot J. L. 2002b; Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980 [View Article][PubMed]
    [Google Scholar]
  29. Sharkey L. L., McNemar M. D., Saporito-Irwin S. M., Sypherd P. S., Fonzi W. A. 1999; HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol 181:5273–5279[PubMed]
    [Google Scholar]
  30. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764 [View Article][PubMed]
    [Google Scholar]
  31. Staab J. F., Sundstrom P. 1998; Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14:681–686 [View Article][PubMed]
    [Google Scholar]
  32. Staab J. F., Bahn Y.-S., Tai C.-H., Cook P. F., Sundstrom P. 2004; Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem 279:40737–40747 [View Article][PubMed]
    [Google Scholar]
  33. Stephens C. 2002; Microbiology: breaking down biofilms. Curr Biol 12:R132–R134 [View Article][PubMed]
    [Google Scholar]
  34. Wang L. H. 2006 Inhibitors of Yeast Filamentous Growth and Method of Their Manufacture Singapore: USPA Publication, Agency for Science, Technology and Research;
    [Google Scholar]
  35. Wang L.-H., He Y., Gao Y., Wu J. E., Dong Y.-H., He C., Wang S. X., Weng L.-X., Xu J.-L. et al. 2004; A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.029058-0
Loading
/content/journal/jmm/10.1099/jmm.0.029058-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error