1887

Abstract

The diagnosis of invasive pneumococcal disease (IPD) is currently based on culture methods, which lack sensitivity, especially after antibiotic therapy. Molecular methods have improved sensitivity and do not require viable bacteria; however, their use is complicated by reports of low specificity with some assays. The present study investigated the specificity of a real-time PCR targeting for the detection of IPD. A group of 147 healthy children, aged 6 months to 16 years (mean 6.4 years, median 4.9 years, interquartile range 6.4 years), who were in hospital for routine examinations, were tested for pneumococcal carrier status and for the presence of detectable pneumococcal DNA in their blood by real-time PCR targeting the pneumococcal gene. In addition, 35 culture-positive biological samples were analysed. Urine was examined for the presence of pneumococcal DNA and C-polysaccharide antigen. Carriage was detected in 77 of the 147 subjects (52.4 %); however, regardless of carrier status, none of the subjects had a positive result from blood. Analysis of the culture-positive biological samples yielded positive results in 100 % (15/15) of cerebrospinal fluid samples and 95 % (19/20) of blood samples. All urine samples from healthy carriers were negative for DNA, whilst antigenuria was detected in 44/77 carriers (57.1 %). In conclusion, real-time PCR is both sensitive and specific and can be a useful tool in the routine diagnosis of IPD. Its sensitivity, which surpasses that of other methods for this purpose, does not come at the cost of reduced specificity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.028357-0
2011-06-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/6/710.html?itemId=/content/journal/jmm/10.1099/jmm.0.028357-0&mimeType=html&fmt=ahah

References

  1. Abdeldaim G., Herrmann B., Korsgaard J., Olcén P., Blomberg J., Strålin K.. ( 2009;). Is quantitative PCR for the pneumolysin (ply) gene useful for detection of pneumococcal lower respiratory tract infection?. Clin Microbiol Infect 15:, 565–570. [CrossRef].[PubMed].
    [Google Scholar]
  2. Abdeldaim G., Herrmann B., Mölling P., Holmberg H., Blomberg J., Olcén P., Strålin K.. ( 2010;). Usefulness of real-time PCR for lytA, ply, and Spn9802 on plasma samples for the diagnosis of pneumococcal pneumonia. . Clin Microbiol Infect 16:, 1135–1141. [CrossRef].[PubMed].
    [Google Scholar]
  3. Antonio M., Hakeem I., Sankareh K., Cheung Y. B., Adegbola R. A.. ( 2009;). Evaluation of sequential multiplex PCR for direct detection of multiple serotypes of Streptococcus pneumoniae from nasopharyngeal secretions. . J Med Microbiol 58:, 296–302. [CrossRef].[PubMed].
    [Google Scholar]
  4. Avni T., Mansur N., Leibovici L., Paul M.. ( 2010;). PCR using blood for diagnosis of invasive pneumococcal disease: systematic review and meta-analysis. . J Clin Microbiol 48:, 489–496. [CrossRef].[PubMed].
    [Google Scholar]
  5. Azzari C., Resti M.. ( 2008;). Reduction of carriage and transmission of Streptococcus pneumoniae: the beneficial “side effect” of pneumococcal conjugate vaccine. . Clin Infect Dis 47:, 997–999. [CrossRef].[PubMed].
    [Google Scholar]
  6. Azzari C., Moriondo M., Indolfi G., Massai C., Becciolini L., de Martino M., Resti M.. ( 2008;). Molecular detection methods and serotyping performed directly on clinical samples improve diagnostic sensitivity and reveal increased incidence of invasive disease by Streptococcus pneumoniae in Italian children. . J Med Microbiol 57:, 1205–1212. [CrossRef].[PubMed].
    [Google Scholar]
  7. Azzari C., Moriondo M., Indolfi G., Cortimiglia M., Canessa C., Becciolini L., Lippi F., de Martino M., Resti M.. ( 2010;). Realtime PCR is more sensitive than multiplex PCR for diagnosis and serotyping in children with culture negative pneumococcal invasive disease. . PLoS ONE 5:, e9282. [CrossRef].[PubMed].
    [Google Scholar]
  8. Black R. E., Morris S. S., Bryce J.. ( 2003;). Where and why are 10 million children dying every year?. Lancet 361:, 2226–2234. [CrossRef].[PubMed].
    [Google Scholar]
  9. Blaschke A. J., Heyrend C., Byington C. L., Obando I., Vazquez-Barba I., Doby E. H., Korgenski E. K., Sheng X., Poritz M. A. et al. ( 2010;). Molecular analysis improves pathogen identification and epidemiologic study of pediatric parapneumonic empyema. . Pediatr Infect Dis J (Epub ahead of print: [CrossRef].[PubMed].
    [Google Scholar]
  10. Carvalho M. G., Tondella M. L., McCaustland K., Weidlich L., McGee L., Mayer L. W., Steigerwalt A., Whaley M., Facklam R. R. et al. ( 2007;). Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. . J Clin Microbiol 45:, 2460–2466. [CrossRef].[PubMed].
    [Google Scholar]
  11. Carvalho M. G., Pimenta F. C., Jackson D., Roundtree A., Ahmad Y., Millar E. V., O’Brien K. L., Whitney C. G., Cohen A. L., Beall B. W.. ( 2010;). Revisiting pneumococcal carriage by use of broth enrichment and PCR techniques for enhanced detection of carriage and serotypes. . J Clin Microbiol 48:, 1611–1618. [CrossRef].[PubMed].
    [Google Scholar]
  12. Charkaluk M. L., Kalach N., Mvogo H., Dehecq E., Magentie H., Raymond J., Gendrel D., Kremp O., Decoster A.. ( 2006;). Assessment of a rapid urinary antigen detection by an immunochromatographic test for diagnosis of pneumococcal infection in children. . Diagn Microbiol Infect Dis 55:, 89–94. [CrossRef].[PubMed].
    [Google Scholar]
  13. Chiba N., Murayama S. Y., Morozumi M., Nakayama E., Okada T., Iwata S., Sunakawa K., Ubukata K.. ( 2009;). Rapid detection of eight causative pathogens for the diagnosis of bacterial meningitis by real-time PCR. . J Infect Chemother 15:, 92–98. [CrossRef].[PubMed].
    [Google Scholar]
  14. Corless C. E., Guiver M., Borrow R., Edwards-Jones V., Fox A. J., Kaczmarski E. B.. ( 2001;). Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. . J Clin Microbiol 39:, 1553–1558. [CrossRef].[PubMed].
    [Google Scholar]
  15. Dagan R., Shriker O., Hazan I., Leibovitz E., Greenberg D., Schlaeffer F., Levy R.. ( 1998;). Prospective study to determine clinical relevance of detection of pneumococcal DNA in sera of children by PCR. . J Clin Microbiol 36:, 669–673.[PubMed].
    [Google Scholar]
  16. Domínguez J., Blanco S., Rodrigo C., Azuara M., Galí N., Mainou A., Esteve A., Castellví A., Prat C. et al. ( 2003;). Usefulness of urinary antigen detection by an immunochromatographic test for diagnosis of pneumococcal pneumonia in children. . J Clin Microbiol 41:, 2161–2163. [CrossRef].[PubMed].
    [Google Scholar]
  17. Dowell S. F., Garman R. L., Liu G., Levine O. S., Yang Y. H.. ( 2001;). Evaluation of Binax NOW, an assay for the detection of pneumococcal antigen in urine samples, performed among pediatric patients. . Clin Infect Dis 32:, 824–825. [CrossRef].[PubMed].
    [Google Scholar]
  18. Isaacman D. J., Karasic R. B., Reynolds E. A., Kost S. I.. ( 1996;). Effect of number of blood cultures and volume of blood on detection of bacteremia in children. . J Pediatr 128:, 190–195. [CrossRef].[PubMed].
    [Google Scholar]
  19. Leino T., Auranen K., Jokinen J., Leinonen M., Tervonen P., Takala A. K.. ( 2001;). Pneumococcal carriage in children during their first two years: important role of family exposure. . Pediatr Infect Dis J 20:, 1022–1027. [CrossRef].[PubMed].
    [Google Scholar]
  20. Murdoch D. R., Anderson T. P., Beynon K. A., Chua A., Fleming A. M., Laing R. T., Town G. I., Mills G. D., Chambers S. T., Jennings L. C.. ( 2003;). Evaluation of a PCR assay for detection of Streptococcus pneumoniae in respiratory and nonrespiratory samples from adults with community-acquired pneumonia. . J Clin Microbiol 41:, 63–66. [CrossRef].[PubMed].
    [Google Scholar]
  21. Neeleman C., Klaassen C. H., Klomberg D. M., de Valk H. A., Mouton J. W.. ( 2004;). Pneumolysin is a key factor in misidentification of macrolide-resistant Streptococcus pneumoniae and is a putative virulence factor of S. mitis and other streptococci. . J Clin Microbiol 42:, 4355–4357. [CrossRef].[PubMed].
    [Google Scholar]
  22. Regev-Yochay G., Raz M., Dagan R., Porat N., Shainberg B., Pinco E., Keller N., Rubinstein E.. ( 2004;). Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. . Clin Infect Dis 38:, 632–639. [CrossRef].[PubMed].
    [Google Scholar]
  23. Rello J., Lisboa T., Lujan M., Gallego M., Kee C., Kay I., Lopez D., Waterer G. W..DNA-Neumococo Study Group ( 2009;). Severity of pneumococcal pneumonia associated with genomic bacterial load. . Chest 136:, 832–840. [CrossRef].[PubMed].
    [Google Scholar]
  24. Resti M., Micheli A., Moriondo M., Becciolini L., Cortimiglia M., Canessa C., Indolfi G., Bartolini E., de Martino M., Azzari C.. ( 2009;). Comparison of the effect of antibiotic treatment on the possibility of diagnosing invasive pneumococcal disease by culture or molecular methods: a prospective, observational study of children and adolescents with proven pneumococcal infection. . Clin Ther 31:, 1266–1273. [CrossRef].[PubMed].
    [Google Scholar]
  25. Resti M., Moriondo M., Cortimiglia M., Indolfi G., Canessa C., Becciolini L., Bartolini E., Benedictis F. M., de Martino M. et al. ( 2010;). Community-acquired bacteremic pneumococcal pneumonia in children: diagnosis and serotyping by real-time polymerase chain reaction using blood samples. . Clin Infect Dis 51:, 1042–1049. [CrossRef].[PubMed].
    [Google Scholar]
  26. Saha S. K., Darmstadt G. L., Baqui A. H., Hossain B., Islam M., Foster D., Al-Emran H., Naheed A., Arifeen S. E. et al. ( 2008;). Identification of serotype in culture negative pneumococcal meningitis using sequential multiplex PCR: implication for surveillance and vaccine design. . PLoS ONE 3:, e3576. [CrossRef].[PubMed].
    [Google Scholar]
  27. Sard B., Bailey M. C., Vinci R.. ( 2006;). An analysis of pediatric blood cultures in the postpneumococcal conjugate vaccine era in a community hospital emergency department. . Pediatr Emerg Care 22:, 295–300. [CrossRef].[PubMed].
    [Google Scholar]
  28. Smith M. D., Sheppard C. L., Hogan A., Harrison T. G., Dance D. A., Derrington P., George R. C..South West Pneumococcus Study Group ( 2009;). Diagnosis of Streptococcus pneumoniae infections in adults with bacteremia and community-acquired pneumonia: clinical comparison of pneumococcal PCR and urinary antigen detection. . J Clin Microbiol 47:, 1046–1049. [CrossRef].[PubMed].
    [Google Scholar]
  29. Strachan R. E., Cornelius A., Gilbert G. L., Gulliver T., Martin A., McDonald T., Nixon G. M., Roseby R., Ranganathan S. et al. ( 2011;). A bedside assay to detect Streptococcus pneumoniae in children with empyema. . Pediatr Pulmonol 46:, 179–183. [CrossRef].[PubMed].
    [Google Scholar]
  30. Van Gastel E., Bruynseels P., Verstrepen W., Mertens A.. ( 2007;). Evaluation of a real-time polymerase chain reaction assay for the diagnosis of pneumococcal and meningococcal meningitis in a tertiary care hospital. . Eur J Clin Microbiol Infect Dis 26:, 651–653. [CrossRef].[PubMed].
    [Google Scholar]
  31. WHO ( 2007;). Pneumococcal conjugate vaccine for childhood immunization – WHO position paper. . Wkly Epidemiol Rec 82:, 93–104.[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.028357-0
Loading
/content/journal/jmm/10.1099/jmm.0.028357-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error