1887

Abstract

is the main cause of contagious agalactia, a serious disease of sheep and goats, which has major clinical and economic impacts. We have developed a multilocus sequence typing (MLST) scheme using the sequenced genomes of the strains PG2 and 5632. An MLST scheme based on the genes , , , and was designed and in total 3468 bp of sequence were analysed for each strain. MLST offers a highly discriminatory typing method for and was capable of subdividing 53 strains into 17 distinct sequence types, largely according to geographical origin. MLST detected unexpected diversity in recent isolates from Spain, identifying two novel outliers, and enabled typing of novel Mongolian isolates for the first time. Genetic diversity in the sequenced regions was largely due to mutation, with recombination playing a much smaller role. A web-accessible database has been set up for this MLST scheme for : http://pubmlst.org/magalactiae/. MLST offers a robust, objective molecular epidemiological tool for that that enables interlaboratory comparison of data.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.028159-0
2011-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/6/803.html?itemId=/content/journal/jmm/10.1099/jmm.0.028159-0&mimeType=html&fmt=ahah

References

  1. Bergonier D., Bertholet X., Poumarat F.. ( 1997;). Contagious agalactia of small ruminants: current knowledge concerning epidemiology, diagnosis and control.. Rev Sci Tech 16:, 848–873.
    [Google Scholar]
  2. Feil E. J., Enright M. C.. ( 2004;). Analyses of clonality and the evolution of bacterial pathogens. . Curr Opin Microbiol 7:, 308–313. [CrossRef].[PubMed].
    [Google Scholar]
  3. Feil E. J., Holmes E. C., Bessen D. E., Chan M. S., Day N. P., Enright M. C., Goldstein R., Hood D. W., Kalia A. et al. ( 2001;). Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. . Proc Natl Acad Sci U S A 98:, 182–187. [CrossRef].[PubMed].
    [Google Scholar]
  4. Hunter P. R., Gaston M. A.. ( 1988;). Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. . J Clin Microbiol 26:, 2465–2466.[PubMed].
    [Google Scholar]
  5. Jolley K. A., Maiden M. C.. ( 2010;). BIGSdb: scalable analysis of bacterial genome variation at the population level. . BMC Bioinformatics 11:, 595. [CrossRef].[PubMed].
    [Google Scholar]
  6. Maiden M. C.. ( 2006;). Multilocus sequence typing of bacteria. . Annu Rev Microbiol 60:, 561–588. [CrossRef].[PubMed].
    [Google Scholar]
  7. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K. et al. ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. . Proc Natl Acad Sci U S A 95:, 3140–3145. [CrossRef].[PubMed].
    [Google Scholar]
  8. Maynard Smith J., Smith N. H., O’Rourke M., Spratt B. G.. ( 1993;). How clonal are bacteria?. Proc Natl Acad Sci U S A 90:, 4384–4388. [CrossRef].[PubMed].
    [Google Scholar]
  9. Mayor D., Jores J., Korczak B. M., Kuhnert P.. ( 2008;). Multilocus sequence typing (MLST) of Mycoplasma hyopneumoniae: a diverse pathogen with limited clonality. . Vet Microbiol 127:, 63–72. [CrossRef].[PubMed].
    [Google Scholar]
  10. McAuliffe L., Ellis R., Lawes J., Ayling R. D., Nicholas R. A. J.. ( 2005;). 16S rDNA PCR and denaturing gradient gel electrophoresis; a single generic test for detecting and differentiating Mycoplasma species. . J Med Microbiol 54:, 731–739. [CrossRef].[PubMed].
    [Google Scholar]
  11. McAuliffe L., Churchward C. P., Lawes J. R., Loria G. R., Ayling R. D., Nicholas R. A. J.. ( 2008;). VNTR analysis reveals unexpected genetic diversity within Mycoplasma agalactiae, the main causative agent of contagious agalactia. . BMC Microbiol 8:, 193. [CrossRef].[PubMed].
    [Google Scholar]
  12. Nicholas R. A. J., Baker S. E.. ( 1998;). Recovery of mycoplasmas from animals. . In Mycoplasma Protocols, pp. 37–43. Edited by Miles R. J., Nicholas R. A. J... Totowa, USA:: Humana Press;. [CrossRef].
    [Google Scholar]
  13. Nouvel L. X., Sirand-Pugnet P., Marenda M. S., Sagné E., Barbe V., Mangenot S., Schenowitz C., Jacob D., Barré A. et al. ( 2010;). Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. . BMC Genomics 11:, 86. [CrossRef].[PubMed].
    [Google Scholar]
  14. OIE ( 2003;). Contagious agalactia. . In Manual of Standards for Diagnostic Tests and Vaccines, pp. 992–999. Paris:: World Organisation for Animal Health;.
    [Google Scholar]
  15. Pilo P., Fleury B., Marenda M., Frey J., Vilei E. M.. ( 2003;). Prevalence and distribution of the insertion element ISMag1 in Mycoplasma agalactiae. . Vet Microbiol 92:, 37–48. [CrossRef].[PubMed].
    [Google Scholar]
  16. Selander R. K., Smith N. H.. ( 1990;). Molecular population genetics of Salmonella. . Rev Med Microbiol 1:, 219–228.
    [Google Scholar]
  17. Sirand-Pugnet P., Lartigue C., Marenda M., Jacob D., Barré A., Barbe V., Schenowitz C., Mangenot S., Couloux A. et al. ( 2007;). Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. . PLoS Genet 3:, e75. [CrossRef].[PubMed].
    [Google Scholar]
  18. Solsona M., Lambert M., Poumarat F.. ( 1996;). Genomic, protein homogeneity and antigenic variability of Mycoplasma agalactiae. . Vet Microbiol 50:, 45–58. [CrossRef].[PubMed].
    [Google Scholar]
  19. Subramaniam S., Bergonier D., Poumarat F., Capaul S., Schlatter Y., Nicolet J., Frey J.. ( 1998;). Species identification of Mycoplasma bovis and Mycoplasma agalactiae based on the uvrC genes by PCR. . Mol Cell Probes 12:, 161–169. [CrossRef].[PubMed].
    [Google Scholar]
  20. Tola S., Idini G., Manunta D., Casciano I., Rocchigiani A. M., Angioi A., Leori G.. ( 1996;). Comparison of Mycoplasma agalactiae isolates by pulsed field gel electrophoresis, SDS-PAGE and immunoblotting. . FEMS Microbiol Lett 143:, 259–265. [CrossRef].[PubMed].
    [Google Scholar]
  21. Tola S., Angioi A., Rocchigiani A. M., Idini G., Manunta D., Galleri G., Leori G.. ( 1997;). Detection of Mycoplasma agalactiae in sheep milk samples by polymerase chain reaction. . Vet Microbiol 54:, 17–22. [CrossRef].[PubMed].
    [Google Scholar]
  22. Vos M., Didelot X.. ( 2009;). A comparison of homologous recombination rates in bacteria and archaea. . ISME J 3:, 199–208. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.028159-0
Loading
/content/journal/jmm/10.1099/jmm.0.028159-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error