1887

Abstract

Extended-spectrum -lactamase (ESBL)-producing Gram-negative bacilli (GNB) are of increasing clinical concern in all age groups worldwide. Whilst sepsis continues to be the leading cause of morbidity and mortality in Indian neonates in the community, identification of microbiological attributes in this population is lacking. This population-based study enrolled 1738 infants with a diagnosis of clinical sepsis at four participating centres in India. Each study site conducted Bactec blood culture, identified bacterial species by API test and stored isolates at −70 °C. From 252 GNB isolates, 155 (113 species, 21 and 21 other) were subjected to drug susceptibility testing, ESBL phenotyping and testing for clonal relatedness of ESBL strains by PFGE. The results demonstrated that species and are the most common GNB causes of neonatal sepsis in India, and over one-third are ESBL producers in both community and hospital settings. ESBL-producing strains exhibited frequent co-resistance to aminoglycosides and ciprofloxacin, but remained susceptible to imipenem. PFGE analysis revealed extensive genetic diversity within the ESBL-producing isolates, showing multiple profiles (total of 23). Over 40 % of all ESBL-producing isolates formed three pulsed-field profiles (PFP I–III), with PFP-II being the largest cluster (>20 % of all ESBL-producing isolates), sharing strains from two distant locations. Identification of a common clone at two geographically distant centres indicated that predominant clones with increased virulence may exist, even in the absence of any clear outbreak. The presence of ESBL-producing strains in community infants with no prior history of hospitalization or antibiotic use dictates heightened vigilance and further studies on the ecology of these organisms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.027375-0
2011-04-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/4/500.html?itemId=/content/journal/jmm/10.1099/jmm.0.027375-0&mimeType=html&fmt=ahah

References

  1. Anandan, S., Thomas, N., Veeraraghavan, B. & Jana, A. K. ( 2009; ). Prevalence of extended-spectrum β-lactamase producing Escherichia coli and Klebsiella spp in a neonatal intensive care unit. Indian Pediatr 46, 1106–1107.
    [Google Scholar]
  2. Arpin, C., Dubois, V., Coulange, L., André, C., Fischer, I., Noury, P., Grobost, F., Brochet, J. P., Jullin, J. & other authors ( 2003; ). Extended-spectrum β-lactamase-producing Enterobacteriaceae in community and private health care centers. Antimicrob Agents Chemother 47, 3506–3514.[CrossRef]
    [Google Scholar]
  3. Bagattini, M., Crivaro, V., Di Popolo, A., Gentile, F., Scarcella, A., Triassi, M., Villari, P. & Zarrilli, R. ( 2006; ). Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. J Antimicrob Chemother 57, 979–982.[CrossRef]
    [Google Scholar]
  4. Ben-Ami, R., Schwaber, M. J., Navon-Venezia, S., Schwartz, D., Giladi, M., Chmelnitsky, I., Leavitt, A. & Carmeli, Y. ( 2006; ). Influx of extended-spectrum β-lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis 42, 925–934.[CrossRef]
    [Google Scholar]
  5. Bradford, P. A. ( 2001; ). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14, 933–951.[CrossRef]
    [Google Scholar]
  6. Calbo, E., Romaní, V., Xercavins, M., Gómez, L., Vidal, C. G., Quintana, S., Vila, J. & Garau, J. ( 2006; ). Risk factors for community-onset urinary tract infections due to Escherichia coli harbouring extended-spectrum β-lactamases. J Antimicrob Chemother 57, 780–783.[CrossRef]
    [Google Scholar]
  7. Cartelle, M., del Mar Tomas, M., Pertega, S., Beceiro, A., Dominguez, M. A., Velasco, D., Molina, F., Villanueva, R. & Bou, G. ( 2004; ). Risk factors for colonization and infection in a hospital outbreak caused by a strain of Klebsiella pneumoniae with reduced susceptibility to expanded-spectrum cephalosporins. J Clin Microbiol 42, 4242–4249.[CrossRef]
    [Google Scholar]
  8. Decré, D., Gachot, B., Lucet, J. C., Arlet, G., Bergogne-Bérézin, E. & Régnier, B. ( 1998; ). Clinical and bacteriologic epidemiology of extended-spectrum β-lactamase-producing strains of Klebsiella pneumoniae in a medical intensive care unit. Clin Infect Dis 27, 834–844.[CrossRef]
    [Google Scholar]
  9. Dubois, V., De Barbeyrac, B., Rogues, A.-M., Arpin, C., Coulange, L., Andre, C., M'zali, F., Megraud, F. & Quentin, C. ( 2010; ). CTX-M-producing Escherichia coli in a maternity ward: a likely community importation and evidence of mother-to-neonate transmission. J Antimicrob Chemother 65, 1368–1371.[CrossRef]
    [Google Scholar]
  10. Jain, A., Roy, I., Gupta, M. K., Kumar, M. & Agarwal, S. K. ( 2003; ). Prevalence of extended-spectrum β-lactamase-producing Gram-negative bacteria in septicaemic neonates in a tertiary care hospital. J Med Microbiol 52, 421–425.[CrossRef]
    [Google Scholar]
  11. Jarlier, V., Nicolas, M. H., Fournier, G. & Phillipon, A. ( 1988; ). Extended broad-spectrum β-lactamases conferring resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10, 867–878.[CrossRef]
    [Google Scholar]
  12. Kim, Y. K., Pai, H., Lee, H. J., Park, S. E., Choi, E. H., Kim, J., Kim, J.-H. & Kim, E.-C. ( 2002; ). Bloodstream infections by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 46, 1481–1491.[CrossRef]
    [Google Scholar]
  13. Krishna, B. V. S., Patil, A. B. & Chandrasekhar, M. R. ( 2007; ). Extended spectrum β lactamase producing Klebsiella pneumoniae in neonatal intensive care unit. Indian J Pediatr 74, 627–630.[CrossRef]
    [Google Scholar]
  14. Lautenbach, E., Patel, J. B., Bilker, W. B., Edelstein, P. H. & Fishman, N. O. ( 2001; ). Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 32, 1162–1171.[CrossRef]
    [Google Scholar]
  15. Manchanda, V., Singh, N. P., Shamweel, A., Eideh, H. K. & Thukral, S. S. ( 2006; ). Molecular epidemiology of clinical isolates of AmpC producing Klebsiella pneumoniae. Indian J Med Microbiol 24, 177–181.
    [Google Scholar]
  16. Mirelis, B., Navarro, F., Miró, E., Mesa, R. J., Coll, P. & Prats, G. ( 2003; ). Community transmission of extended-spectrum β-lactamase. Emerg Infect Dis 9, 1024–1025.[CrossRef]
    [Google Scholar]
  17. National Neonatal–Perinatal Database ( 1997; ). Neonatal morbidity and mortality: report of the National Neonatal–Perinatal Database. Indian Pediatr 34, 1039–1042.
    [Google Scholar]
  18. National Neonatology Forum NNPD Network ( 2005; ). Report of the National Neonatal–Perinatal Database (2002–03). Available from http://www.nnfi.org/images/NNPD_2002-03.pdf.
  19. NCCLS ( 2001; ). Zone diameter interpretive standards. NCCLS global information supplement 21: 40–71.
  20. Perilli, M., Dell'Amico, E., Segatore, B., de Massis, M. R., Bianchi, C., Luzzaro, F., Rossolini, G. M., Toniolo, A., Nicoletti, G. & Amicosante, G. ( 2002; ). Molecular characterization of extended-spectrum β-lactamases produced by nosocomial isolates of Enterobacteriaceae from an Italian nationwide survey. J Clin Microbiol 40, 611–614.[CrossRef]
    [Google Scholar]
  21. Pitout, J. D. & Laupland, K. B. ( 2008; ). Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8, 159–166.[CrossRef]
    [Google Scholar]
  22. Rodrigues, C., Shukla, U., Jog, S. & Mehta, A. ( 2005; ). Extended-spectrum β-lactamase-producing flora in healthy persons. Emerg Infect Dis 11, 981–982.[CrossRef]
    [Google Scholar]
  23. Rodríguez-Baño, J., Navarro, M. D., Romero, L., Martínez-Martínez, L., Muniain, M. A., Perea, E. J., Pérez-Cano, R. & Pascual, A. ( 2004; ). Epidemiology and clinical features of infections caused by extended-spectrum β-lactamase-producing Escherichia coli in non-hospitalized patients. J Clin Microbiol 42, 1089–1094.[CrossRef]
    [Google Scholar]
  24. Sahly, H., Navon-Venezia, S., Roesler, L., Hay, A., Carmeli, Y., Podschun, R., Hennequin, C., Forestier, C. & Ofek, I. ( 2008; ). Extended-spectrum β-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae. Antimicrob Agents Chemother 52, 3029–3034.[CrossRef]
    [Google Scholar]
  25. Struelens, M. J. ( 1996; ). Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 2, 2–11.[CrossRef]
    [Google Scholar]
  26. Talbot, G. H., Bradley, J., Edwards, J. E., Jr, Gilbert, D., Scheld, M. & Bartlett, J. G. ( 2006; ). Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 42, 657–668.[CrossRef]
    [Google Scholar]
  27. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial isolate typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  28. Thambu, D., Pichamuthu, K., Varghese, G. M. & Subramanian, S. ( 2006; ). Community-acquired, fatal extended spectrum β lactamase producing Klebsiella pneumoniae splenic abscess and sepsis. J Postgrad Med 52, 328–329.
    [Google Scholar]
  29. The India Antimicrobial Resistance Study GroupMathai, D., Rhomberg, P. R., Biedenbach, D. J. & Jones, R. N. ( 2002; ). Evaluation of the in vitro activity of six broad-spectrum β-lactam antimicrobial agents tested against recent clinical isolates from India: a survey of ten medical center laboratories. Diagn Microbiol Infect Dis 44, 367–377.[CrossRef]
    [Google Scholar]
  30. Valverde, A., Coque, T. M., Sánchez-Moreno, M. P., Rollán, A., Baquero, F. & Cantón, R. ( 2004; ). Dramatic increase in prevalence of fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae during non-outbreak situations in Spain. J Clin Microbiol 42, 4769–4775.[CrossRef]
    [Google Scholar]
  31. Weber, M. W., Carlin, J. B., Gatchalian, S., Lehmann, D., Muhe, L. & Mulholland, E. K., WHO Young Infants Study Group ( 2003; ). Predictors of neonatal sepsis in developing countries. Pediatr Infect Dis J 22, 711–717.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.027375-0
Loading
/content/journal/jmm/10.1099/jmm.0.027375-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error