1887

Abstract

Enteral feeding via a percutaneous endoscopic gastrostomy tube is required for nutritional support in patients with dysphagia. Enteral tube feeding bypasses the innate defence mechanisms in the upper gastrointestinal tract. This study examined the surface-associated microbial populations and immune response in the gastric and duodenal mucosae of eight enteral nutrition (EN) patients and ten controls. Real-time PCR and fluorescence hybridization were employed to assess microbiota composition and mucosal pro-inflammatory cytokine expression. The results showed that EN patients had significantly higher levels of bacterial DNA in mucosal biopsies from the stomach and duodenum (<0.05) than the controls, and that enterobacteria were the predominant colonizing species on mucosal surfaces in these individuals. Expression of the pro-inflammatory cytokines interleukin (IL)-1, IL-6 and tumour necrosis factor- was significantly higher in gastric and small intestinal mucosae from patients fed normal diets in comparison with those receiving EN (<0.05). These results indicate that EN can lead to significant bacterial overgrowth on upper gastrointestinal tract mucosae and a significantly diminished pro-inflammatory cytokine response.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.026401-0
2011-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/3/359.html?itemId=/content/journal/jmm/10.1099/jmm.0.026401-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  2. Bartosch, S., Fite, A., Macfarlane, G. T. & McMurdo, M. E. ( 2004; ). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70, 3575–3581.[CrossRef]
    [Google Scholar]
  3. Bartosch, S., Woodmansey, E. J., Paterson, J. C., McMurdo, M. E. & Macfarlane, G. T. ( 2005; ). Microbiological effects of consuming a synbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis and oligofructose in elderly persons determined by real-time polymerase chain reaction and counting of viable bacteria. Clin Infect Dis 40, 28–37.[CrossRef]
    [Google Scholar]
  4. Burgener-Kairuz, P., Zuber, J. P., Jaunin, P., Buchman, T. G., Biller, J. & Rossier, M. ( 1994; ). Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-α-demethylase (L1A1) gene fragment. J Clin Microbiol 32, 1902–1907.
    [Google Scholar]
  5. Dicksved, J., Lindberg, M., Rosenquist, M., Enroth, H., Jansson, J. K. & Engstrand, L. ( 2009; ). Molecular characterization of the stomach microbiota in patients with gastric cancer and controls. J Med Microbiol 58, 509–516.[CrossRef]
    [Google Scholar]
  6. Franks, A. H., Harmsen, H. J. M., Raangs, G. C., Jansen, G. J., Schut, F. & Welling, G. W. ( 1998; ). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 3336–3345.
    [Google Scholar]
  7. Furrie, E., Macfarlane, S., Kennedy, A., Cummings, J. H., Walsch, S. V., O'Neil, D. A. & Macfarlane, G. T. ( 2005; ). Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54, 242–249.[CrossRef]
    [Google Scholar]
  8. Giannella, R. A., Broitman, S. A. & Zamcheck, N. ( 1972; ). Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13, 251–256.[CrossRef]
    [Google Scholar]
  9. Heel, K. A., Kong, S., McCauley, R. D., Erber, W. N. & Hall, J. C. ( 1998; ). The effect of luminal nutrition on mucosal cellularity and immunity of the gut. J Gastroenterol Hepatol 13, 1015–1019.[CrossRef]
    [Google Scholar]
  10. Kempf, V. A., Trebesius, K. & Autenrieth, I. B. ( 2000; ). Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38, 830–838.
    [Google Scholar]
  11. Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, J. C., Kamphius, G. R., Wilkinson, M. H. & Welling, G. W. ( 1995; ). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 3069–3075.
    [Google Scholar]
  12. Li, J., Kudsk, K. A., Gocinski, B., Dent, D., Glezer, J. & Langkamp-Henken, B. ( 1995; ). Effects of parenteral and enteral nutrition on gut-associated lymphoid tissue. J Trauma 39, 44–52.[CrossRef]
    [Google Scholar]
  13. Lin, L. & Cohen, N. H. ( 2005; ). Early nutritional support for the ICU patient: does it matter? Contemp Crit Care 2, 1–10.
    [Google Scholar]
  14. Loge, F. J., Emerick, R. W., Thompson, D. E., Nelson, D. C. & Darby, J. L. ( 1999; ). Development of a fluorescent 16S rRNA oligonucleotide probe specific to the family Enterobacteriaceae. Water Environ Res 71, 75–83.[CrossRef]
    [Google Scholar]
  15. Macfarlane, S. & Macfarlane, G. T. ( 2004; ). Bacterial diversity in the large intestine. Adv Appl Microbiol 54, 261–289.
    [Google Scholar]
  16. Macfarlane, S., Furrie, E., Cummings, J. H. & Macfarlane, G. T. ( 2004; ). Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis 38, 1690–1699.[CrossRef]
    [Google Scholar]
  17. MacFie, J., O'Boyle, C., Mitchell, C. J., Buckley, P. M., Johnstone, D. & Sudworth, P. ( 1999; ). Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora and septic morbidity. Gut 45, 223–228.[CrossRef]
    [Google Scholar]
  18. Marshall, B. J. ( 1994; ). Helicobacter pylori. Am J Gastroenterol 89, S116–S128.
    [Google Scholar]
  19. Marshall, J. C. ( 1999; ). Gastrointestinal flora and its alterations in critical illness. Curr Opin Clin Nutr Metab Care 2, 405–411.[CrossRef]
    [Google Scholar]
  20. McKay, D. M. & Baird, A. W. ( 1999; ). Cytokine regulation of epithelial permeability and ion transport. Gut 44, 283–289.[CrossRef]
    [Google Scholar]
  21. Monstein, H. J., Tiveljung, A., Kraft, C. H., Borch, K. & Jonasson, J. ( 2000; ). Profiling of bacterial flora in gastric biopsies from patients with Helicobacter pylori-associated gastritis and histologically normal control individuals by temperature gradient gel electrophoresis and 16S rDNA sequence analysis. J Med Microbiol 49, 817–822.
    [Google Scholar]
  22. Nord, C. E. & Kager, L. ( 1984; ). The normal flora of the gastrointestinal tract. Neth J Med 27, 249–252.
    [Google Scholar]
  23. O'Boyle, C. J., MacFie, J., Mitchell, C. J., Johnstone, D., Sagar, P. M. & Sedman, P. C. ( 1998; ). Microbiology of bacterial translocation in humans. Gut 42, 29–35.[CrossRef]
    [Google Scholar]
  24. O'May, G. A., Reynolds, N., Smith, A. R., Kennedy, A. & Macfarlane, G. T. ( 2005; ). Effect of pH and antibiotics on microbial overgrowth in the stomachs and duodena of patients undergoing percutaneous endoscopic gastrostomy feeding. J Clin Microbiol 43, 3059–3065.[CrossRef]
    [Google Scholar]
  25. Paju, S., Bernstein, J. M., Haase, E. M. & Scannapieco, F. A. ( 2003; ). Molecular analysis of bacterial flora associated with chronically inflamed maxillary sinuses. J Med Microbiol 52, 591–597.[CrossRef]
    [Google Scholar]
  26. Pearce, C. B. & Duncan, H. D. ( 2002; ). Enteral feeding. Nasogastric, nasojejunal, percutaneous endoscopic gastrostomy or jejunostomy: its indications and limitations. Postgrad Med J 78, 198–204.[CrossRef]
    [Google Scholar]
  27. Savage, D. C. ( 1977; ). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107–133.[CrossRef]
    [Google Scholar]
  28. Sghir, A., Antonopoulos, D. & Mackie, R. I. ( 1998; ). Design and evaluation of a Lactobacillus group-specific ribosomal RNA-targeted hybridization probe and its application to the study of intestinal microecology in pigs. Syst Appl Microbiol 21, 291–296.[CrossRef]
    [Google Scholar]
  29. Simon, G. L. & Gorbach, S. L. ( 1986; ). The human intestinal microflora. Dig Dis Sci 31, 147S–162S.[CrossRef]
    [Google Scholar]
  30. Wei, L. H., Kuo, M. L., Chen, C. A., Chou, C. H., Lai, K. B., Lee, C. N. & Hsieh, C. Y. ( 2003; ). Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22, 1517–1527.[CrossRef]
    [Google Scholar]
  31. Welsh, F. K. S., Farmery, S. M., MacLennan, K., Sheridan, M. B., Barclay, G. R., Guillou, P. J. & Reynolds, J. V. ( 1998; ). Gut barrier function in malnourished patients. Gut 42, 396–401.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.026401-0
Loading
/content/journal/jmm/10.1099/jmm.0.026401-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error