1887

Abstract

, an opportunistic pathogen, is the third most common pathogen associated with nosocomial urinary tract infections (UTIs). The virulence of this organism is due to its ability to produce quorum-sensing (QS) signal molecules and form biofilms. These biofilms are usually resistant to conventional antibiotics and host immune responses. Recently, beneficial effects of macrolides, especially azithromycin (AZM), have been shown in patients suffering from chronic infections caused by These were due to anti-inflammatory and modulatory effects of AZM on the expression of virulence factors of this pathogen. The present study was designed to evaluate the potential of AZM to inhibit QS signal molecules and its ability to attenuate the virulence of in an experimental UTI model. Sub-MIC concentrations of AZM significantly inhibited the production of QS signals, swimming, swarming and twitching motilities, and biofilm formation . The therapeutic evaluation of AZM in this experimental UTI model showed complete clearance of the organisms from the mouse kidneys. The results of this study highlight the potential effectiveness of AZM in attenuating the virulence of in a UTI model.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.025387-0
2011-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/3/300.html?itemId=/content/journal/jmm/10.1099/jmm.0.025387-0&mimeType=html&fmt=ahah

References

  1. Amsden, G. W. ( 2005; ). Anti-inflammatory effects of macrolides – an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 55, 10–21.
    [Google Scholar]
  2. Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D. & Buret, A. ( 1999; ). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37, 1771–1776.
    [Google Scholar]
  3. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  4. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998; ). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.[CrossRef]
    [Google Scholar]
  5. de Kievit, T. R. ( 2009; ). Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11, 279–288.[CrossRef]
    [Google Scholar]
  6. Donlan, R. M. ( 2001; ). Biofilms and device-associated infections. Emerg Infect Dis 7, 277–281.[CrossRef]
    [Google Scholar]
  7. Donlan, R. M. & Costerton, J. W. ( 2002; ). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167–193.[CrossRef]
    [Google Scholar]
  8. Ehrlich, G. D., Veeh, R., Wang, X., Costerton, J. W., Hayes, J. D., Hu, F. Z., Daigle, B. J., Ehrlich, M. D. & Post, J. C. ( 2002; ). Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 287, 1710–1715.[CrossRef]
    [Google Scholar]
  9. Favre-Bonté, S., Köhler, T. & Van Delden, C. ( 2003; ). Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52, 598–604.[CrossRef]
    [Google Scholar]
  10. Hansen, C. R., Pressler, T., Koch, C. & Høiby, N. ( 2005; ). Long-term azithromycin treatment of cystic fibrosis patients with chronic P. aeruginosa infection; an observational cohort study. J Cyst Fibros 4, 35–40.[CrossRef]
    [Google Scholar]
  11. Harjai, K., Khandwahaa, R. K., Mittal, R., Yadav, V., Gupta, V. & Sharma, S. ( 2005; ). Effect of pH on production of virulence factors by biofilm cells of P. aeruginosa. Folia Microbiol (Praha) 50, 99–102.[CrossRef]
    [Google Scholar]
  12. Hoffmann, N., Lee, B., Hentzer, M., Rasmussen, T. B., Song, Z., Johansen, H. K., Givskov, M. & Høiby, N. ( 2007; ). Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr−/− mice. Antimicrob Agents Chemother 51, 3677–3687.[CrossRef]
    [Google Scholar]
  13. Ichimiya, T., Takeoka, K., Hiramatsu, K., Hirai, K., Yamasaki, T. & Nasu, M. ( 1996; ). The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy 42, 186–191.[CrossRef]
    [Google Scholar]
  14. Kakar, K., Sharma, S., Asnani, P. J., Banerjee, C. K. & Sharma, B. K. ( 1986; ). Experimental haematogenous pyelonephritis in mice with uropathogenic, enteropathogenic and enterotoxigenic Escherichia coli. Antonie van Leeuwenhoek 52, 153–161.[CrossRef]
    [Google Scholar]
  15. Köhler, T., Curty, L. K., Barja, F., van Delden, C. & Pechère, J.-C. ( 2000; ). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182, 5990–5996.[CrossRef]
    [Google Scholar]
  16. Kumar, R., Chhibber, S. & Harjai, K. ( 2009; ). Quorum sensing is necessary for the virulence of Pseudomonas aeruginosa during urinary tract infection. Kidney Int 76, 286–292.[CrossRef]
    [Google Scholar]
  17. Mikuniya, T., Kato, Y., Kariyama, R., Monden, K., Hikida, M. & Kumon, H. ( 2005; ). Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama 59, 209–216.
    [Google Scholar]
  18. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  19. Mittal, R., Chhibber, S., Sharma, S. & Harjai, K. ( 2006; ). Effect of macrophage secretory products on elaboration of virulence factors by planktonic and biofilm cells of Pseudomonas aeruginosa. Comp Immunol Microbiol Infect Dis 29, 12–26.[CrossRef]
    [Google Scholar]
  20. Molinari, G., Paglia, P. & Schito, G. C. ( 1992; ). Inhibition of motility of Pseudomonas aeruginosa and Proteus mirabilis by subinhibitory concentrations of azithromycin. Eur J Clin Microbiol Infect Dis 11, 469–471.[CrossRef]
    [Google Scholar]
  21. Moser, C., Jensen, P. O., Kobayashi, O., Shirai, R., Hougen, H. P. & Hoiby, N. ( 2002; ). Macrolide treatment improves outcome and reduces IL-4 production in susceptible Balb/C mice with chronic Pseudomonas aeruginosa lung infection. Pediatr Pulmonol Suppl 24, 275–280.
    [Google Scholar]
  22. Nalca, Y., Jänsch, L., Bredenbruch, F., Geffers, R., Buer, J. & Häussler, S. ( 2006; ). Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50, 1680–1688.[CrossRef]
    [Google Scholar]
  23. NCCLS ( 2002; ). Performance Standards for Antimicrobial Susceptibility Testing, 12th Informational Supplement. M100-S12. Wayne, PA: National Committee for Clinical Laboratory Standards.
  24. Nicolau, D. P., Banevicius, M. A., Nightingale, C. H. & Quintiliani, R. ( 1999; ). Beneficial effect of adjunctive azithromycin in treatment of mucoid Pseudomonas aeruginosa pneumonia in the murine model. Antimicrob Agents Chemother 43, 3033–3035.
    [Google Scholar]
  25. O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. & Kolter, R. ( 1999; ). Genetic approaches to the study of biofilms. Methods Enzymol 310, 91–109.
    [Google Scholar]
  26. Pechère, J. C. ( 2001; ). Azithromycin reduces the production of virulence factors in Pseudomonas aeruginosa by inhibiting quorum sensing. Jpn J Antibiot 54, 87–89.
    [Google Scholar]
  27. Rashid, M. H. & Kornberg, A. ( 2000; ). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97, 4885–4890.[CrossRef]
    [Google Scholar]
  28. Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H. & Hamood, A. N. ( 1999; ). Contribution of quorum sensing to the virulence of P. aeruginosa in burn wound infections. Infect Immun 67, 5854–5862.
    [Google Scholar]
  29. Rumbaugh, K. P., Griswold, J. A. & Hamood, A. N. ( 2000; ). The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2, 1721–1731.[CrossRef]
    [Google Scholar]
  30. Saiman, L., Chen, Y., Gabriel, P. S. & Knirsch, C. ( 2002; ). Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 46, 1105–1107.[CrossRef]
    [Google Scholar]
  31. Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J. & Greenberg, E. P. ( 2000; ). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764.[CrossRef]
    [Google Scholar]
  32. Skindersoe, M. E., Alhede, M., Phipps, R., Yang, L., Jensen, P. O., Rasmussen, T. B., Bjarnsholt, T., Tolker-Nielsen, T., Høiby, N. & Givskov, M. ( 2008; ). Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52, 3648–3663.[CrossRef]
    [Google Scholar]
  33. Smith, R. S., Harris, S. G., Phipps, R. & Iglewski, B. H. ( 2002; ). The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184, 1132–1139.[CrossRef]
    [Google Scholar]
  34. Sofer, D., Gilboa-Garber, N., Belz, A. & Garber, N. C. ( 1999; ). ‘Subinhibitory’ erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy 45, 335–341.[CrossRef]
    [Google Scholar]
  35. Tateda, K., Comte, R., Pechère, J. C., Köhler, T., Yamaguchi, K. & van Delden, C. ( 2001; ). Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45, 1930–1933.[CrossRef]
    [Google Scholar]
  36. Tsai, W. C., Rodriguez, M. L., Young, K. S., Deng, J. C., Thannickal, V. J., Tateda, K., Hershenson, M. B. & Standiford, T. J. ( 2004; ). Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am J Respir Crit Care Med 170, 1331–1339.[CrossRef]
    [Google Scholar]
  37. Van Delden, C. & Iglewski, B. H. ( 1998; ). Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4, 551–560.[CrossRef]
    [Google Scholar]
  38. Venturi, V. ( 2006; ). Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30, 274–291.[CrossRef]
    [Google Scholar]
  39. Wagner, V. E., Li, L.-L., Isabella, V. M. & Iglewski, B. H. ( 2007; ). Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Anal Bioanal Chem 387, 469–479.[CrossRef]
    [Google Scholar]
  40. Willcox, M. D. P., Zhu, H., Conibear, T. C. R., Hume, E. B. H., Givskov, M., Kjelleberg, S. & Rice, S. A. ( 2008; ). Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 154, 2184–2194.[CrossRef]
    [Google Scholar]
  41. Wolter, J. M. & McCormack, J. G. ( 1998; ). The effect of subinhibitory concentrations of antibiotics on adherence of Pseudomonas aeruginosa to cystic fibrosis (CF) and non-CF-affected tracheal epithelial cells. J Infect 37, 217–223.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.025387-0
Loading
/content/journal/jmm/10.1099/jmm.0.025387-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error