1887

Abstract

is the causative agent of Q fever, a disease with a spectrum of presentations from the mild to fatal, including chronic sequelae. Since its discovery in 1935, it has been shown to infect a wide range of hosts, including humans. A recent outbreak in Europe reminds us that this is still a significant pathogen of concern, very transmissible and with a very low infectious dose. For these reasons it has also featured regularly on various threat lists, as it may be considered by the unscrupulous for use as a bioweapon. As an intracellular pathogen, it has remained an enigmatic organism due to the inability to culture it on laboratory media. As a result, interactions with the host have been difficult to elucidate and we still have a very limited understanding of the molecular mechanisms of virulence. However, two recent developments will open up our understanding of : the first axenic growth medium capable of supporting cell-free growth, and the production of the first isogenic mutant. We are approaching an exciting time for expanding our knowledge of this organism in the next few years.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.024778-0
2011-01-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/1/9.html?itemId=/content/journal/jmm/10.1099/jmm.0.024778-0&mimeType=html&fmt=ahah

References

  1. Ackland, J. R., Worswick, D. A. & Marmion, B. P. ( 1994; ). Vaccine prophylaxis of Q fever – a follow-up study of the efficacy of Q-Vax (CSL) 1985–1990. Med J Aust 160, 704–708.
    [Google Scholar]
  2. Aguilera, M., Salinas, R., Rosales, E., Carminati, S., Colombo, M. I. & Berón, W. ( 2009; ). Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect Immun 77, 4609–4620.[CrossRef]
    [Google Scholar]
  3. Akporiaye, E. T. & Baca, O. G. ( 1983; ). Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii. J Bacteriol 154, 520–523.
    [Google Scholar]
  4. Angelakis, E. & Raoult, D. ( 2010; ). Q fever. Vet Microbiol 140, 297–309.[CrossRef]
    [Google Scholar]
  5. Ascher, M. S., Berman, M. A. & Ruppanner, R. ( 1983; ). Initial clinical and immunological evaluation of a new phase I Q fever vaccine and skin test in humans. J Infect Dis 148, 214–222.[CrossRef]
    [Google Scholar]
  6. Astobiza, I., Barandika, J. F., Hurtado, A., Juste, R. A. & Garcia-Perez, A. L. ( 2010; ). Kinetics of Coxiella burnetii excretion in a commercial dairy sheep flock after treatment with oxytetracycline. Vet J 184, 172–175.[CrossRef]
    [Google Scholar]
  7. Atzpodien, E., Baumgartner, W., Artelt, A. & Thiele, D. ( 1994; ). Valvular endocarditis occurs as a part of a disseminated Coxiella burnetii infection in immunocompromised BALB/cJ (H-2d) mice infected with the Nine Mile isolate of Coxiella burnetii. J Infect Dis 170, 223–226.[CrossRef]
    [Google Scholar]
  8. Ayres, J. G., Smith, E. G. & Flint, N. ( 1996; ). Protracted fatigue and debility after acute Q fever. Lancet 347, 978–979.[CrossRef]
    [Google Scholar]
  9. Ayres, J. G., Flint, N., Smith, E. G., Tunnicliffe, W. S., Fletcher, T. J., Hammond, K., Ward, D. & Marmion, B. P. ( 1998; ). Post-infection fatigue syndrome following Q fever. QJM 91, 105–123.[CrossRef]
    [Google Scholar]
  10. Babudieri, B. ( 1959; ). Q fever: a zoonosis. Adv Vet Sci 5, 81–154.
    [Google Scholar]
  11. Baca, O. G. & Paretsky, D. ( 1983; ). Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev 47, 127–149.
    [Google Scholar]
  12. Baca, O. G., Klassen, D. A. & Aragon, A. S. ( 1993; ). Entry of Coxiella burnetii into host cells. Acta Virol 37, 143–155.
    [Google Scholar]
  13. Beare, P. A., Howe, D., Cockrell, D. C., Omsland, A., Hansen, B. & Heinzen, R. A. ( 2009a; ). Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191, 1369–1381.[CrossRef]
    [Google Scholar]
  14. Beare, P. A., Unsworth, N., Andoh, M., Voth, D. E., Omsland, A., Gilk, S. D., Williams, K. P., Sobral, B. W., Kupko, J. J., III & other authors ( 2009b; ). Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77, 642–656.[CrossRef]
    [Google Scholar]
  15. Bell, J. F., Lackman, D. B., Meis, A. & Hadlow, W. J. ( 1964; ). Recurrent reaction at site of Q fever vaccination in a sensitized person. Mil Med 129, 591.
    [Google Scholar]
  16. Berón, W., Gutierrez, M. G., Rabinovitch, M. & Colombo, M. I. ( 2002; ). Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 70, 5816–5821.[CrossRef]
    [Google Scholar]
  17. Burnet, F. M. & Freeman, M. ( 1937; ). Experimental studies on the virus of Q fever. Med J Aust 2, 299–302.
    [Google Scholar]
  18. Burnet, F. M. & Freeman, M. ( 1983; ). Experimental studies on the virus of “Q” fever (reprinted). Rev Infect Dis 5, 800–808.[CrossRef]
    [Google Scholar]
  19. Capo, C., Zugun, F., Stein, A., Tardei, G., Lepidi, H., Raoult, D. & Mege, J. L. ( 1996; ). Upregulation of tumor necrosis factor alpha and interleukin-1 beta in Q fever endocarditis. Infect Immun 64, 1638–1642.
    [Google Scholar]
  20. Capo, C., Moynault, A., Collette, Y., Olive, D., Brown, E. J., Raoult, D. & Mege, J. L. ( 2003; ). Coxiella burnetii avoids macrophage phagocytosis by interfering with spatial distribution of complement receptor 3. J Immunol 170, 4217–4225.[CrossRef]
    [Google Scholar]
  21. Casadevall, A. & Pirofski, L. A. ( 2006; ). A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv Immunol 91, 1–44.
    [Google Scholar]
  22. Chen, S. Y., Vodkin, M., Thompson, H. A. & Williams, J. C. ( 1990; ). Isolated Coxiella burnetii synthesizes DNA during acid activation in the absence of host cells. J Gen Microbiol 136, 89–96.[CrossRef]
    [Google Scholar]
  23. Cockrell, D. C., Beare, P. A., Fischer, E. R., Howe, D. & Heinzen, R. A. ( 2008; ). A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells. J Microbiol Methods 72, 321–325.[CrossRef]
    [Google Scholar]
  24. Coleman, S. A., Fischer, E. R., Howe, D., Mead, D. J. & Heinzen, R. A. ( 2004; ). Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186, 7344–7352.[CrossRef]
    [Google Scholar]
  25. Cox, H. R. & Bell, E. J. ( 1939; ). The cultivation of Rickettsia diaporica in tissue culture and in the tissues of developing chick embryos. Public Health Rep 54, 2171–2178.[CrossRef]
    [Google Scholar]
  26. Davis, G. E. & Cox, H. R. ( 1938; ). A filter-passing infectious agent isolated from ticks. I. Isolation from Dermacentor andersoni, reactions in animals, and filtration experiments. Public Health Rep 53, 2259–2282.[CrossRef]
    [Google Scholar]
  27. Davis, J. L. & Patrick, W. C. ( 1965; ). New method for purifying Coxiella burnetii by dextran sulfate precipitation followed by centrifugation. Appl Microbiol 13, 99.
    [Google Scholar]
  28. Dellacasagrande, J., Capo, C., Raoult, D. & Mege, J. L. ( 1999; ). IFN-γ-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162, 2259–2265.
    [Google Scholar]
  29. Denison, A. M., Massung, R. F. & Thompson, H. A. ( 2007; ). Analysis of the O-antigen biosynthesis regions of phase II Isolates of Coxiella burnetii. FEMS Microbiol Lett 267, 102–107.[CrossRef]
    [Google Scholar]
  30. Derrick, E. H. ( 1937; ). “Q” fever, a new fever entity: clinical features, diagnosis and laboratory investigation. Med J Aust 2, 281–299.
    [Google Scholar]
  31. Dupuis, G., Petite, J., Peter, O. & Vouilloz, M. ( 1987; ). An important outbreak of human Q fever in a Swiss alpine valley. Int J Epidemiol 16, 282–287.[CrossRef]
    [Google Scholar]
  32. Enserink, M. ( 2010; ). Questions abound in Q-fever explosion in the Netherlands. Science 327, 266–267.
    [Google Scholar]
  33. Felsheim, R. F., Herron, M. J., Nelson, C. M., Burkhardt, N. Y., Barbet, A. F., Kurtti, T. J. & Munderloh, U. G. ( 2006; ). Transformation of Anaplasma phagocytophilum. BMC Biotechnol 6, 42.[CrossRef]
    [Google Scholar]
  34. Fenollar, F. & Raoult, D. ( 2007; ). Molecular diagnosis of bloodstream infections caused by non-cultivable bacteria. Int J Antimicrob Agents 30, S7–S15.[CrossRef]
    [Google Scholar]
  35. Fenollar, F., Fournier, P. E. & Raoult, D. ( 2004; ). Molecular detection of Coxiella burnetti in the sera of patients with Q fever endocarditis or vascular infection. J Clin Microbiol 42, 4919–4924.[CrossRef]
    [Google Scholar]
  36. Fernández-Guerrero, M. L., Muelas, J. M., Aguado, J. M., Renedo, G., Fraile, J., Soriano, F. & De Villalobos, E. ( 1988; ). Q fever endocarditis on porcine bioprosthetic valves. Clinicopathologic features and microbiologic findings in 3 patients treated with doxycycline, cotrimoxazole, and valve-replacement. Ann Intern Med 108, 209–213.[CrossRef]
    [Google Scholar]
  37. Fiset, P. ( 1957; ). Phase variation of Rickettsia (Coxiella) burnetii; study of the antibody response in guinea pigs and rabbits. Can J Microbiol 3, 435–445.[CrossRef]
    [Google Scholar]
  38. Fishbein, D. B. & Raoult, D. ( 1992; ). A cluster of Coxiella burnetii infections associated with exposure to vaccinated goats and their unpasteurized dairy products. Am J Trop Med Hyg 47, 35–40.
    [Google Scholar]
  39. Fitzpatrick, K. A., Kersh, G. J. & Massung, R. F. ( 2010; ). Practical method for extraction of PCR-quality DNA from environmental soil samples. Appl Environ Microbiol 76, 4571–4573.[CrossRef]
    [Google Scholar]
  40. Franco, I. S., Shuman, H. A. & Charpentier, X. ( 2009; ). The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol 11, 1435–1443.[CrossRef]
    [Google Scholar]
  41. Freylikhman, O., Tokarevich, N., Suvorov, A., Vorobiova, E. & Totolian, A. ( 2003; ). Coxiella burnetti persistence in three generations of mice after application of live attenuated human M-44 vaccine against Q fever. Ann N Y Acad Sci 990, 496–499.[CrossRef]
    [Google Scholar]
  42. Fries, L. F., Waag, D. M. & Williams, J. C. ( 1993; ). Safety and immunogenicity in human volunteers of a chloroform-methanol residue vaccine for Q fever. Infect Immun 61, 1251–1258.
    [Google Scholar]
  43. Gami, A. S., Antonios, V. S., Thompson, R. L., Chaliki, H. P. & Ammash, N. M. ( 2004; ). Q fever endocarditis in the United States. Mayo Clin Proc 79, 253–257.[CrossRef]
    [Google Scholar]
  44. Gimenez, D. F. ( 1964; ). Staining rickettsiae in yolk-sac cultures. Stain Technol 39, 135–140.
    [Google Scholar]
  45. Gonder, J. C., Kishimoto, R. A., Kastello, M. D., Pedersen, C. E. & Larson, E. W. ( 1979; ). Cynomolgus monkey model for experimental Q fever infection. J Infect Dis 139, 191–196.[CrossRef]
    [Google Scholar]
  46. Gutierrez, M. G., Vázquez, C. L., Munafo, D. B., Zoppino, F. C. M., Berón, W., Rabinovitch, M. & Colombo, M. I. ( 2005; ). Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 7, 981–993.[CrossRef]
    [Google Scholar]
  47. Hacker, J. & Fischer, G. ( 1993; ). Immunophilins: structure-function relationship and possible role in microbial pathogenicity. Mol Microbiol 10, 445–456.[CrossRef]
    [Google Scholar]
  48. Hackstadt, T. ( 1990; ). The role of lipopolysaccharides in the virulence of Coxiella burnetii. Ann N Y Acad Sci 590, 27–32.[CrossRef]
    [Google Scholar]
  49. Hackstadt, T. & Williams, J. C. ( 1981; ). Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A 78, 3240–3244.[CrossRef]
    [Google Scholar]
  50. Hackstadt, T. & Williams, J. C. ( 1983; ). pH-dependence of the Coxiella burnetii glutamate transport system. J Bacteriol 154, 598–603.
    [Google Scholar]
  51. Hackstadt, T., Peacock, M. G., Hitchcock, P. J. & Cole, R. L. ( 1985; ). Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect Immun 48, 359–365.
    [Google Scholar]
  52. Heinzen, R. A., Scidmore, M. A., Rockey, D. D. & Hackstadt, T. ( 1996; ). Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64, 796–809.
    [Google Scholar]
  53. Heinzen, R. A., Hackstadt, T. & Samuel, J. E. ( 1999; ). Developmental biology of Coxiella burnetii. Trends Microbiol 7, 149–154.[CrossRef]
    [Google Scholar]
  54. Hendrix, L. & Mallavia, L. P. ( 1984; ). Active transport of proline by Coxiella burnetii. J Gen Microbiol 130, 2857–2863.
    [Google Scholar]
  55. Hilbink, F., Penrose, M., Kovácová, E. & Kazár, J. ( 1993; ). Q fever is absent from New Zealand. Int J Epidemiol 22, 945–949.[CrossRef]
    [Google Scholar]
  56. Honstettre, A., Ghigo, E., Moynault, A., Capo, C., Toman, R., Akira, S., Takeuchi, O., Lepidi, H., Raoult, D. & Mege, J. L. ( 2004; ). Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. J Immunol 172, 3695–3703.[CrossRef]
    [Google Scholar]
  57. Hoover, T. A., Culp, D. W., Vodkin, M. H., Williams, J. C. & Thompson, H. A. ( 2002; ). Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (Crazy), of the Coxiella burnetii Nine Mile strain. Infect Immun 70, 6726–6733.[CrossRef]
    [Google Scholar]
  58. Howe, D. & Mallavia, L. P. ( 2000; ). Coxiella burnetti exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect Immun 68, 3815–3821.[CrossRef]
    [Google Scholar]
  59. Howe, D., Shannon, J. G., Winfree, S., Dorward, D. W. & Heinzen, R. A. ( 2010; ). Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect Immun 78, 3465–3474.[CrossRef]
    [Google Scholar]
  60. Izzo, A. A., Marmion, B. P. & Worswick, D. A. ( 1988; ). Markers of cell-mediated immunity after vaccination with an inactivated, whole-cell Q fever vaccine. J Infect Dis 157, 781–789.[CrossRef]
    [Google Scholar]
  61. Jäger, C., Lautenschläger, S., Willems, H. & Baljer, G. ( 2002; ). Coxiella burnetii plasmid types QpDG and QpH1 are closely related and likely identical. Vet Microbiol 89, 161–166.[CrossRef]
    [Google Scholar]
  62. Kazár, J. ( 1996; ). Q fever. In Rickettsiae and Rickettsial Diseases, pp. 353–362. Edited by Kazár, J. & Toman, R.. Bratislava. : Slovak Academy of Sciences.
    [Google Scholar]
  63. Kazár, J., Brezina, R., Palanová, A., Tvrdá, B. & Schramek, S. ( 1982; ). Immunogenicity and reactogenicity of a Q fever chemovaccine in persons professionally exposed to Q fever in Czechoslovakia. Bull World Health Organ 60, 389–394.
    [Google Scholar]
  64. Kazár, J., Schramek, S., Lisák, V. & Brezina, R. ( 1987; ). Antigenicity of chloroform-methanol-treated Coxiella burnetii preparations. Acta Virol 31, 158–167.
    [Google Scholar]
  65. Kersh, G. J., Wolfe, T. M., Fitzpatrick, K. A., Candee, A. J., Oliver, L. D., Patterson, N. E., Self, J. S., Priestley, R. A., Loftis, A. D. & Massung, R. F. ( 2010; ). Presence of Coxiella burnetii DNA in the environment of the United States, 2006 to 2008. Appl Environ Microbiol 76, 4469–4475.[CrossRef]
    [Google Scholar]
  66. Kishimoto, R. A., Rozmiarek, H. & Larson, E. W. ( 1978; ). Experimental Q fever infection in congenitally athymic nude mice. Infect Immun 22, 69–71.
    [Google Scholar]
  67. Klee, S. R., Ellerbrok, H., Tyczka, J., Franz, T. & Appel, B. ( 2006; ). Evaluation of a real-time PCR assay to detect Coxiella burnetii. Ann N Y Acad Sci 1078, 563–565. [CrossRef]
    [Google Scholar]
  68. Koster, F. T., Williams, J. C. & Goodwin, J. S. ( 1985a; ). Cellular immunity in Q fever - modulation of responsiveness by a suppressor T cell-monocyte circuit. J Immunol 135, 1067–1072.
    [Google Scholar]
  69. Koster, F. T., Williams, J. C. & Goodwin, J. S. ( 1985b; ). Cellular immunity in Q fever: specific lymphocyte unresponsiveness in Q fever endocarditis. J Infect Dis 152, 1283–1289.[CrossRef]
    [Google Scholar]
  70. Kovácová, E. & Kazár, J. ( 2002; ). Q fever – still a query and underestimated infectious disease. Acta Virol 46, 193–210.
    [Google Scholar]
  71. Kristinsson, A. & Bentall, H. H. ( 1967; ). Medical and surgical treatment of Q-fever endocarditis. Lancet 290, 693–697.[CrossRef]
    [Google Scholar]
  72. La Scola, B., Lepidi, H. & Raoult, D. ( 1997; ). Pathologic changes during acute Q fever: influence of the route of infection and inoculum size in infected guinea pigs. Infect Immun 65, 2443–2447.
    [Google Scholar]
  73. Lautenschläger, S., Willems, H., Jäger, C. & Baljer, G. ( 2000; ). Sequencing and characterization of the cryptic plasmid QpRS from Coxiella burnetii. Plasmid 44, 85–88.[CrossRef]
    [Google Scholar]
  74. Levy, P. Y., Drancourt, M., Etienne, J., Auvergnat, J. C., Beytout, J., Sainty, J. M., Goldstein, F. & Raoult, D. ( 1991; ). Comparison of different antibiotic regimens for therapy of 32 cases of Q fever endocarditis. Antimicrob Agents Chemother 35, 533–537.[CrossRef]
    [Google Scholar]
  75. Li, Q., Niu, D., Wen, B., Chen, M., Qiu, L. & Zhang, J. ( 2005; ). Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann N Y Acad Sci 1063, 130–142.[CrossRef]
    [Google Scholar]
  76. Liu, Z. M., Tucker, A. M., Driskell, L. O. & Wood, D. O. ( 2007; ). Mariner-based transposon mutagenesis of Rickettsia prowazekii. Appl Environ Microbiol 73, 6644–6649.[CrossRef]
    [Google Scholar]
  77. Lührmann, A. & Roy, C. R. ( 2007; ). Coxiella bumetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 75, 5282–5289.[CrossRef]
    [Google Scholar]
  78. Madariaga, M. G., Rezai, K., Trenholme, G. M. & Weinstein, R. A. ( 2003; ). Q fever: a biological weapon in your backyard. Lancet Infect Dis 3, 709–721.[CrossRef]
    [Google Scholar]
  79. Mallavia, L. P. ( 1991; ). Genetics of Rickettsiae. Eur J Epidemiol 7, 213–221.[CrossRef]
    [Google Scholar]
  80. Marmion, B. P. ( 1967; ). Development of Q-fever vaccines, 1937 to 1967. Med J Aust 2, 1074–1078.
    [Google Scholar]
  81. Marmion, B. P., Ormsbee, R. A., Kyrkou, M., Wright, J., Worswick, D. A., Izzo, A. A., Esterman, A., Feery, B. & Shapiro, R. A. ( 1990; ). Vaccine prophylaxis of abattoir-associated Q fever: 8 years' experience in Australian abattoirs. Epidemiol Infect 104, 275–287.[CrossRef]
    [Google Scholar]
  82. Marmion, B. P., Shannon, M., Maddocks, I., Storm, P. & Penttila, I. ( 1996; ). Protracted debility and fatigue after acute Q fever. Lancet 347, 977–978.
    [Google Scholar]
  83. Marmion, B. P., Sukocheva, O., Storm, P. A., Lockhart, M., Turra, M., Kok, T., Ayres, J., Routledge, H. & Graves, S. ( 2009; ). Q fever: persistence of antigenic non-viable cell residues of Coxiella burnetii in the host – implications for post Q fever infection fatigue syndrome and other chronic sequelae. QJM 102, 673–684.[CrossRef]
    [Google Scholar]
  84. Marrie, T. J., Van Buren, J., Fraser, J., Haldane, E. V., Faulkner, R. S., Williams, J. C. & Kwan, C. ( 1985; ). Seroepidemiology of Q fever among domestic animals in Nova Scotia. Am J Public Health 75, 763–766.[CrossRef]
    [Google Scholar]
  85. Marrie, T. J., Stein, A., Janigan, D. & Raoult, D. ( 1996; ). Route of infection determines the clinical manifestations of acute Q fever. J Infect Dis 173, 484–487.[CrossRef]
    [Google Scholar]
  86. Maurin, M. & Raoult, D. ( 1999; ). Q fever. Clin Microbiol Rev 12, 518–553.
    [Google Scholar]
  87. McCaul, T. F. ( 1991; ). The developmental cycle of Coxiella burnetii. In Q Fever: The Biology of Coxiella burnetii, pp. 223–258. Edited by Williams, J. C. & Thompson, H. A.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  88. McCaul, T. F. & Williams, J. C. ( 1981; ). Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 147, 1063–1076.
    [Google Scholar]
  89. McCaul, T. F., Williams, J. C. & Thompson, H. A. ( 1991; ). Electron microscopy of Coxiella burnetii in tissue culture. Induction of cell types as products of developmental cycle. Acta Virol 35, 545–556.
    [Google Scholar]
  90. Mege, J. L., Maurin, M., Capo, C. & Raoult, D. ( 1997; ). Coxiella burnetii: the 'query' fever bacterium. A model of immune subversion by a strictly intracellular microorganism. FEMS Microbiol Rev 19, 209–217.[CrossRef]
    [Google Scholar]
  91. Meghari, S., Bechah, Y., Capo, C., Lepidi, H., Raoult, D., Murray, P. J. & Mege, J. L. ( 2008; ). Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4, e23.[CrossRef]
    [Google Scholar]
  92. Miceli, M. H., Veryser, A. K., Anderson, A. D., Hofinger, D., Lee, S. A. & Tancik, C. ( 2010; ). A case of person-to-person transmission of Q fever from an active duty service to his spouse. Vector Borne Zoonotic Dis 10, 539–541.[CrossRef]
    [Google Scholar]
  93. Milazzo, A., Hall, R., Storm, P. A., Harris, R. J., Winslow, W. & Marmion, B. P. ( 2001; ). Sexually transmitted Q fever. Clin Infect Dis 33, 399–402.[CrossRef]
    [Google Scholar]
  94. Mitchell, A. E., Sivitz, L. B. & Black, R. E. ( 2007; ). Infectious diseases diagnosed in US troops who served in the Persian Gulf War, Operation Enduring Freedom, or Operation Iraqi Freedom. In Gulf War and Health, vol. 5, Infectious Diseases, pp. 61–94. Washington, DC. : The National Academies Press.
    [Google Scholar]
  95. Mo, Y. Y., Cianciotto, N. P. & Mallavia, L. P. ( 1995; ). Molecular cloning of a Coxiella burnetii gene encoding a macrophage infectivity potentiator (Mip) analog. Microbiology 141, 2861–2871.[CrossRef]
    [Google Scholar]
  96. Morgan, J. K., Luedtke, B. E. & Shaw, E. I. ( 2010; ). Coxiella burnetii type IVB secretion system region I genes are expressed early during the infection of host cells. FEMS Microbiol Lett 305, 177–183.[CrossRef]
    [Google Scholar]
  97. Ninio, S. & Roy, C. R. ( 2007; ). Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 15, 372–380.[CrossRef]
    [Google Scholar]
  98. Olson, J. G., Jones, F. R. & Blair, P. J. ( 2006; ). Rickettsia spp. In Principles and Practice of Clinical Bacteriology, pp. 285–294. Edited by Gillespie, S. H. & Hawkey, P. M.. Chichester, UK. : Wiley.
    [Google Scholar]
  99. Omsland, A., Cockrell, D. C., Howe, D., Fischer, E. R., Virtaneva, K., Sturdevant, D. E., Porcella, S. F. & Heinzen, R. A. ( 2009; ). Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A 106, 4430–4434.[CrossRef]
    [Google Scholar]
  100. Ormsbee, R. A. ( 1962; ). A method of purifying Coxiella burnetii and other pathogenic rickettsiae. J Immunol 88, 100–108.
    [Google Scholar]
  101. Ormsbee, R. A. & Marmion, B. P. ( 1990; ). Prevention of Coxiella burnetii infection: vaccines and guidelines for those at risk. In Q Fever, vol. 1, The Disease, pp. 225–248. Edited by Marrie, T. J.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  102. Ormsbee, R. A., Bell, E. J., Tallent, G. & Lackman, D. B. ( 1964; ). Influence of phase on protective potency of Q fever vaccine. J Immunol 92, 404.
    [Google Scholar]
  103. Palmer, N. C., Kierstead, M., Key, D. W., Williams, J. C., Peacock, M. G. & Vellend, H. ( 1983; ). Placentitis and abortion in goats and sheep in Ontario caused by Coxiella burnetii. Can Vet J 24, 60–61.
    [Google Scholar]
  104. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  105. Pittman, P. R., Norris, S. L., Coonan, K. M. & Mckee, K. T. ( 2005; ). An assessment of health status among medical research volunteers who served in the Project Whitecoat program at Fort Detrick, Maryland. Mil Med 170, 183–187.
    [Google Scholar]
  106. Rady, M., Glavits, R. & Nagy, G. ( 1985; ). Isolation of Coxiella burnetii and diagnosis of the Q-fever associated abortion in cows and ewes in Hungary. Magyar Allatorvosok Lapja 40, 343–349.
    [Google Scholar]
  107. Raoult, D. ( 1990; ). Host factors in the severity of Q fever. Ann N Y Acad Sci 590, 33–38.[CrossRef]
    [Google Scholar]
  108. Raoult, D. ( 2009; ). Reemergence of Q fever after 11 September 2001. Clin Infect Dis 48, 558–559.[CrossRef]
    [Google Scholar]
  109. Redd, T. & Thompson, H. A. ( 1995; ). Secretion of proteins by Coxiella burnetii. Microbiology 141, 363–369.[CrossRef]
    [Google Scholar]
  110. Romano, P. S., Gutierrez, M. G., Berón, W., Rabinovitch, M. & Colombo, M. I. ( 2007; ). The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol 9, 891–909.[CrossRef]
    [Google Scholar]
  111. Russell-Lodrigue, K. E., Zhang, G. Q., McMurray, D. N. & Samuel, J. E. ( 2006; ). Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect Immun 74, 6085–6091.[CrossRef]
    [Google Scholar]
  112. Samuel, J. E., Frazier, M. E., Kahn, M. L., Thomashow, L. S. & Mallavia, L. P. ( 1983; ). Isolation and characterization of a plasmid from phase I Coxiella burnetii. Infect Immun 41, 488–493.
    [Google Scholar]
  113. Savinelli, E. A. & Mallavia, L. P. ( 1990; ). Comparison of Coxiella burnetii plasmids to homologous chromosomal sequences present in a plasmidless endocarditis-causing isolate. Ann N Y Acad Sci 590, 523–533.[CrossRef]
    [Google Scholar]
  114. Schneeberger, P. M., Hermans, M. H. A., van Hannen, E. J., Schellekens, J. J. A., Leenders, A. C. A. P. & Wever, P. C. ( 2010; ). Real-time PCR with serum samples is indispensable for early diagnosis of acute Q fever. Clin Vaccine Immunol 17, 286–290.[CrossRef]
    [Google Scholar]
  115. Schramek, S. & Mayer, H. ( 1982; ). Different sugar compositions of lipopolysaccharides isolated from phase I and pure phase II cells of Coxiella burnetii. Infect Immun 38, 53–57.
    [Google Scholar]
  116. Scott, G. H. & Williams, J. C. ( 1990; ). Susceptibility of Coxiella burnetii to chemical disinfectants. Ann N Y Acad Sci 590, 291–296.[CrossRef]
    [Google Scholar]
  117. Scott, G. H., Williams, J. C. & Stephenson, E. H. ( 1987; ). Animal models in Q fever: pathological responses of inbred mice to phase I Coxiella burnetii. J Gen Microbiol 133, 691–700.
    [Google Scholar]
  118. Seshadri, R., Paulsen, I. T., Eisen, J. A., Read, T. D., Nelson, K. E., Nelson, W. C., Ward, N. L., Tettelin, H., Davidsen, T. M. & other authors ( 2003; ). Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100, 5455–5460.[CrossRef]
    [Google Scholar]
  119. Shannon, J. G. & Heinzen, R. A. ( 2009; ). Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res 43, 138–148.[CrossRef]
    [Google Scholar]
  120. Shannon, J. G., Howe, D. & Heinzen, R. A. ( 2005; ). Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A 102, 8722–8727.[CrossRef]
    [Google Scholar]
  121. Shannon, J. G., Cockrell, D. C., Takahashi, K., Stahl, G. L. & Heinzen, R. A. ( 2009; ). Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunol 10, 26. [CrossRef]
    [Google Scholar]
  122. Sidwell, R. W., Gebhardt, L. P. & Thorpe, B. D. ( 1964a; ). Studies of latent Q fever infections. 2. Effects of multiple cortisone injections. Am J Hyg 79, 320.
    [Google Scholar]
  123. Sidwell, R. W., Gebhardt, L. P. & Thorpe, B. D. ( 1964b; ). Studies of latent Q fever infections. I. Effects of whole body X-irradiation upon latently infected guinea pigs, white mice and deer mice. Am J Hyg 79, 113.
    [Google Scholar]
  124. Smith, D. J. W. ( 1940; ). Studies on the epidemiology of Q fever. III. The transmission of Q fever by the tick Haemaphysalis humerosa. Aust J Exp Biol Med Sci 18, 103–106.[CrossRef]
    [Google Scholar]
  125. Smith, D. J. W. ( 1941; ). Studies on the epidemiology of Q fever. VIII. The transmission of Q fever by the tick Rhipicephalus sanguineus. Aust J Exp Biol Med Sci 19, 119–122.
    [Google Scholar]
  126. Stein, A. & Raoult, D. ( 1999; ). Pigeon pneumonia in Provence: a bird-borne Q fever outbreak. Clin Infect Dis 29, 617–620.[CrossRef]
    [Google Scholar]
  127. Stein, A., Lepidi, H., Mege, J. L., Marrie, T. J. & Raoult, D. ( 2000; ). Repeated pregnancies in BALB/c mice infected with Coxiella burnetii cause disseminated infection, resulting in stillbirth and endocarditis. J Infect Dis 181, 188–194.[CrossRef]
    [Google Scholar]
  128. Suhan, M., Chen, S. Y., Thompson, H. A., Hoover, T. A., Hill, A. & Williams, J. C. ( 1994; ). Cloning and characterization of an autonomous replication sequence from Coxiella burnetii. J Bacteriol 176, 5233–5243.
    [Google Scholar]
  129. Tigertt, W. D., Benenson, A. S. & Gochenour, W. S. ( 1961; ). Airborne Q fever. Bacteriol Rev 25, 285.
    [Google Scholar]
  130. Tissot Dupont, H., Raoult, D., Brouqui, P., Janbon, F., Peyramond, D., Weiller, P.-J., Chicheportiche, C., Nezeri, M. & Poirier, R. ( 1992; ). Epidemiologic features and clinical presentation of acute Q fever in hospitalized patients: 323 French cases. Am J Med 93, 427–434.[CrossRef]
    [Google Scholar]
  131. To, H., Htwe, K. K., Kako, N., Kim, H. J., Yamaguchi, T., Fukushi, H. & Hirai, K. ( 1998; ). Prevalence of Coxiella burnetii infection in dairy cattle with reproductive disorders. J Vet Med Sci 60, 859–861.[CrossRef]
    [Google Scholar]
  132. Tyczka, J., Eberling, S. & Balfer, G. ( 2005; ). Immunization experiments with recombinant Coxiella burnetii proteins in a murine infection model. Ann N Y Acad Sci 1063, 143–148.[CrossRef]
    [Google Scholar]
  133. Valková, D. & Kazár, J. ( 1995; ). A new plasmid (Qpdv) common to Coxiella burnetti isolates associated with acute and chronic Q fever. FEMS Microbiol Lett 125, 275–280.[CrossRef]
    [Google Scholar]
  134. Vázquez, C. L. & Colombo, M. I. ( 2010a; ). Beclin 1 modulates the anti-apoptotic activity of Bcl-2: insights from a pathogen infection system. Autophagy 6, 177–178.[CrossRef]
    [Google Scholar]
  135. Vázquez, C. L. & Colombo, M. I. ( 2010b; ). Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ 17, 421–438.[CrossRef]
    [Google Scholar]
  136. Vogel, J. P. ( 2004; ). Turning a tiger into a house cat: using Legionella pneumophila to study Coxiella burnetii. Trends Microbiol 12, 103–105.[CrossRef]
    [Google Scholar]
  137. Vogel, J. P. & Isberg, R. R. ( 1999; ). Cell biology of Legionella pneumophila. Curr Opin Microbiol 2, 30–34.[CrossRef]
    [Google Scholar]
  138. Voth, D. E. & Heinzen, R. A. ( 2007; ). Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9, 829–840.[CrossRef]
    [Google Scholar]
  139. Voth, D. E. & Heinzen, R. A. ( 2009; ). Coxiella type IV secretion and cellular microbiology. Curr Opin Microbiol 12, 74–80.[CrossRef]
    [Google Scholar]
  140. Voth, D. E., Howe, D. & Heinzen, R. A. ( 2007; ). Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 75, 4263–4271.[CrossRef]
    [Google Scholar]
  141. Voth, D. E., Howe, D., Beare, P. A., Vogel, J. P., Unsworth, N., Samuel, J. E. & Heinzen, R. A. ( 2009; ). The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191, 4232–4242.[CrossRef]
    [Google Scholar]
  142. Waag, D. M. ( 2007; ). Coxiella burnetii: host and bacterial responses to infection. Vaccine 25, 7288–7295.[CrossRef]
    [Google Scholar]
  143. Waag, D. M., Byrne, W. R., Estep, J., Gibbs, P., Pitt, M. L. M. & Banfield, C. M. ( 1999; ). Evaluation of cynomolgus (Macaca fascicularis) and rhesus (Macaca mulatta) monkeys as experimental models of acute Q fever after aerosol exposure to phase I Coxiella burnetii. Lab Anim Sci 49, 634–638.
    [Google Scholar]
  144. Waag, D. M., England, M. J., Tammariello, R. F., Byrne, W. R., Gibbs, P., Banfield, C. M. & Pitt, M. L. M. ( 2002; ). Comparative efficacy and immunogenicity of Q fever chloroform: methanol residue (CMR) and phase I cellular (Q-Vax) vaccines in cynomolgus monkeys challenged by aerosol. Vaccine 20, 2623–2634.[CrossRef]
    [Google Scholar]
  145. WHO ( 1970; ). Health Aspects of Chemical and Biological Weapons, 1st edn. Geneva: World Health Organization.
  146. WHO ( 2004; ). Health Aspects of Chemical and Biological Weapons, 2nd edn. Geneva: World Health Organization.
  147. Willems, H., Ritter, M., Jäger, C. & Thiele, D. ( 1997; ). Plasmid-homologous sequences in the chromosome of plasmidless Coxiella burnetii Scurry Q217. J Bacteriol 179, 3293–3297.
    [Google Scholar]
  148. Willems, H., Jäger, C. & Baljer, G. ( 1998; ). Physical and genetic map of the obligate intracellular bacterium Coxiella burnetii. J Bacteriol 180, 3816–3822.
    [Google Scholar]
  149. Williams, J. C., Peacock, M. G. & Mccaul, T. F. ( 1981; ). Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun 32, 840–851.
    [Google Scholar]
  150. Williams, J. C., Hoover, T. A., Waag, D. M., Banerjeebhatnagar, N., Bolt, C. R. & Scott, G. H. ( 1990; ). Antigenic structure of Coxiella burnetii. A comparison of lipopolysaccharide and protein antigens as vaccines against Q fever. Ann N Y Acad Sci 590, 370–380.[CrossRef]
    [Google Scholar]
  151. Zamboni, D. S., McGrath, S., Rabinovitch, M. & Roy, C. R. ( 2003; ). Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 49, 965–976.[CrossRef]
    [Google Scholar]
  152. Zhang, G. & Samuel, J. E. ( 2003; ). Identification and cloning potentially protective antigens of Coxiella burnetii using sera from mice experimentally infected with Nine Mile phase I. Ann N Y Acad Sci 990, 510–520.[CrossRef]
    [Google Scholar]
  153. Zhang, Y. X., Zhi, N., Yu, S. R., Li, Q. J., Yu, G. Q. & Zhang, X. ( 1994; ). Protective immunity induced by 67-K outer-membrane protein of phase I Coxiella burnetii in mice and guinea pigs. Acta Virol 38, 327–332.
    [Google Scholar]
  154. Zhang, G., Russell-Lodrigue, K. E., Andoh, M., Zhang, Y., Hendrix, L. R. & Samuel, J. E. ( 2007; ). Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol 179, 8372–8380.[CrossRef]
    [Google Scholar]
  155. Zuerner, R. L. & Thompson, H. A. ( 1983; ). Protein synthesis by intact Coxiella burnetii cells. J Bacteriol 156, 186–191.
    [Google Scholar]
  156. Zusman, T., Yerushalmi, G. & Segal, G. ( 2003; ). Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun 71, 3714–3723.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.024778-0
Loading
/content/journal/jmm/10.1099/jmm.0.024778-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error