1887

Abstract

species have emerged as opportunistic pathogens among cystic fibrosis (CF) and non-CF patients. is the predominant species among Irish CF patients. The objective of this study was to investigate the pathogenicity and potential mechanisms of virulence of Irish isolates and strains from other species. Three patients from whom the isolates were isolated have since died. The virulence of these and other strains was examined by determining the ability to kill larvae. The strains generally were the most virulent of the species tested, with three showing a comparable or greater level of virulence relative to another CF pathogen, , whilst strains from two other species, and , were considerably less virulent. For all species, whole cells were required for larval killing, as cell-free supernatants had little effect on larval survival. Overall, invasive strains showed comparable invasion of two independent lung epithelial cell lines, irrespective of whether they had a CF phenotype. strains were also capable of translocation across polarized lung epithelial cell monolayers. Although protease secretion was a common characteristic across the genus, it is unlikely to be involved in pathogenesis. In conclusion, whilst multiple mechanisms of pathogenicity may exist across the genus , it appears that lung cell invasion and translocation contribute to the virulence of strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.022657-0
2011-03-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/3/289.html?itemId=/content/journal/jmm/10.1099/jmm.0.022657-0&mimeType=html&fmt=ahah

References

  1. Atkinson, R. M., Lipuma, J. J., Rosenbluth, D. B. & Dunne, W. M., Jr ( 2006; ). Chronic colonization with Pandoraea apista in cystic fibrosis patients determined by repetitive-element-sequence PCR. J Clin Microbiol 44, 833–836.[CrossRef]
    [Google Scholar]
  2. Caraher, E., Collins, J., Herbert, G., Murphy, P. G., Gallagher, C. G., Crowe, M. J., Callaghan, M. & McClean, S. ( 2008; ). Evaluation of in vitro virulence characteristics of the genus Pandoraea in lung epithelial cells. J Med Microbiol 57, 15–20.[CrossRef]
    [Google Scholar]
  3. Daneshvar, M. I., Hollis, D. G., Steigerwalt, A. G., Whitney, A. M., Spangler, L., Douglas, M. P., Jordan, J. G., MacGregor, J. P., Hill, B. C. & other authors ( 2001; ). Assignment of CDC weak oxidizer group 2 (WO-2) to the genus Pandoraea and characterization of three new Pandoraea genomospecies. J Clin Microbiol 39, 1819–1826.[CrossRef]
    [Google Scholar]
  4. Duff, C., Murphy, P. G., Callaghan, M. & McClean, S. ( 2006; ). Differences in invasion and translocation of Burkholderia cepacia complex species in polarised lung epithelial cells in vitro. Microb Pathog 41, 183–192.[CrossRef]
    [Google Scholar]
  5. Flannagan, R. S., Aubert, D., Kooi, C., Sokol, P. A. & Valvano, M. A. ( 2007; ). Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect Immun 75, 1679–1689.[CrossRef]
    [Google Scholar]
  6. Forbes, B. & Ehrhardt, C. ( 2005; ). Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60, 193–205.[CrossRef]
    [Google Scholar]
  7. Foster, K. A., Avery, M. L., Yazdanian, M. & Audus, K. L. ( 2000; ). Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. Int J Pharm 208, 1–11.[CrossRef]
    [Google Scholar]
  8. Gingues, S., Kooi, C., Visser, M. B., Subsin, B. & Sokol, P. A. ( 2005; ). Distribution and expression of the ZmpA metalloprotease in the Burkholderia cepacia complex. J Bacteriol 187, 8247–8255.[CrossRef]
    [Google Scholar]
  9. Jander, G., Rahme, L. G. & Ausubel, F. M. ( 2000; ). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182, 3843–3845.[CrossRef]
    [Google Scholar]
  10. Johnson, L. N., Han, J. Y., Moskowitz, S. M., Burns, J. L., Qin, X. & Englund, J. A. ( 2004; ). Pandoraea bacteremia in a cystic fibrosis patient with associated systemic illness. Pediatr Infect Dis J 23, 881–882.[CrossRef]
    [Google Scholar]
  11. Jørgensen, I. M., Johansen, H. K., Frederiksen, B., Pressler, T., Hansen, A., Vandamme, P., Høiby, N. & Koch, C. ( 2003; ). Epidemic spread of Pandoraea apista, a new pathogen causing severe lung disease in cystic fibrosis patients. Pediatr Pulmonol 36, 439–446.[CrossRef]
    [Google Scholar]
  12. Kavanagh, K. & Reeves, E. P. ( 2004; ). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28, 101–112.[CrossRef]
    [Google Scholar]
  13. Kim, J. Y., Sajjan, U. S., Krasan, G. P. & LiPuma, J. J. ( 2005; ). Disruption of tight junctions during traversal of the respiratory epithelium by Burkholderia cenocepacia. Infect Immun 73, 7107–7112.[CrossRef]
    [Google Scholar]
  14. Kooi, C., Subsin, B., Chen, R., Pohorelic, B. & Sokol, P. A. ( 2006; ). Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. Infect Immun 74, 4083–4093.[CrossRef]
    [Google Scholar]
  15. LiPuma, J. J. ( 2003; ). Burkholderia and emerging pathogens in cystic fibrosis. Semin Respir Crit Care Med 24, 681–692.[CrossRef]
    [Google Scholar]
  16. McKevitt, A. I. & Woods, D. E. ( 1984; ). Characterization of Pseudomonas cepacia isolates from patients with cystic fibrosis. J Clin Microbiol 19, 291–293.
    [Google Scholar]
  17. Pimentel, J. D. & MacLeod, C. ( 2008; ). Misidentification of Pandoraea sputorum isolated from sputum of a patient with cystic fibrosis and review of Pandoraea species infections in transplant patients. J Clin Microbiol 46, 3165–3168.[CrossRef]
    [Google Scholar]
  18. Reeves, E. P., Messina, C. G., Doyle, S. & Kavanagh, K. ( 2004; ). Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 158, 73–79.[CrossRef]
    [Google Scholar]
  19. Schneider, I., Queenan, A. M. & Bauernfeind, A. ( 2006; ). Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa. Antimicrob Agents Chemother 50, 1330–1335.[CrossRef]
    [Google Scholar]
  20. Seed, K. D. & Dennis, J. J. ( 2008; ). Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76, 1267–1275.[CrossRef]
    [Google Scholar]
  21. Seed, K. D. & Dennis, J. J. ( 2009; ). Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother 53, 2205–2208.[CrossRef]
    [Google Scholar]
  22. Shen, B. Q., Finkbeiner, W. E., Wine, J. J., Mrsny, R. J. & Widdicombe, J. H. ( 1994; ). Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl secretion. Am J Physiol 266, L493–L501.
    [Google Scholar]
  23. Stryjewski, M. E., LiPuma, J. J., Messier, R. H., Jr, Reller, L. B. & Alexander, B. D. ( 2003; ). Sepsis, multiple organ failure, and death due to Pandoraea pnomenusa infection after lung transplantation. J Clin Microbiol 41, 2255–2257.[CrossRef]
    [Google Scholar]
  24. Swamy, K. H. & Goldberg, A. L. ( 1982; ). Subcellular distribution of various proteases in Escherichia coli. J Bacteriol 149, 1027–1033.
    [Google Scholar]
  25. Uehlinger, S., Schwager, S., Bernier, S. P., Riedel, K., Nguyen, D. T., Sokol, P. A. & Eberl, L. ( 2009; ). Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 77, 4102–4110.[CrossRef]
    [Google Scholar]
  26. Vandamme, P., Mahenthiralingam, E., Holmes, B., Coenye, T., Hoste, B., De Vos, P., Henry, D. & Speert, D. P. ( 2000; ). Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 38, 1042–1047.
    [Google Scholar]
  27. Vonberg, R. P. & Gastmeier, P. ( 2005; ). Isolation of infectious cystic fibrosis patients: results of a systematic review. Infect Control Hosp Epidemiol 26, 401–409.[CrossRef]
    [Google Scholar]
  28. Whitby, P. W., Vanwagoner, T. M., Springer, J. M., Morton, D. J., Seale, T. W. & Stull, T. L. ( 2006; ). Burkholderia cenocepacia utilizes ferritin as an iron source. J Med Microbiol 55, 661–668.[CrossRef]
    [Google Scholar]
  29. Zlosnik, J. E., Hird, T. J., Fraenkel, M. C., Moreira, L. M., Henry, D. A. & Speert, D. P. ( 2008; ). Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J Clin Microbiol 46, 1470–1473.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.022657-0
Loading
/content/journal/jmm/10.1099/jmm.0.022657-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error