1887

Abstract

Development of -lactam resistance, production of alginate and modulation of virulence factor expression that alters host immune responses are the hallmarks of chronic infection in cystic fibrosis patients. In this study, we propose that a co-regulatory network exists between these mechanisms. We compared the promoter activities of , , , , , and genes, representing the -lactam antibiotic resistance master regulatory gene, the alginate switch operon, the and quorum-sensing (QS) genes, and the LasA staphylolytic protease, respectively. Four isogenic strains, the prototypic Alg PAO1, Alg PAO, the mucoid Alg PAO (Alg PDO300) and Alg PAO (Alg PDO) were used. We found that in the presence of AmpR regulator and -lactam antibiotic, the extracytoplasmic function sigma factor AlgT/U positively regulated P, whereas AmpR negatively regulated P. On the basis of this finding we suggest the presence of a negative feedback loop to limit expression. In addition, the functional AlgT/U caused a significant decrease in the expression of QS genes, whereas loss of only resulted in increased P and P transcription. The upregulation of the QS system is likely to be responsible for the increased promoter and the LasA protease activities in Alg PAO and Alg PDO. The enhanced expression of virulence factors in the strains correlated with a higher rate of paralysis. Hence, this study shows that the loss of results in increased virulence, and is indicative of the existence of a co-regulatory network between -lactam resistance, alginate production, QS and virulence factor production, with AmpR playing a central role.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.021600-0
2011-02-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/2/147.html?itemId=/content/journal/jmm/10.1099/jmm.0.021600-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A. Struhl K. (editors) 1999 Short Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bagge N., Schuster M., Hentzer M., Ciofu O., Givskov M., Greenberg E. P., Høiby N. 2004; Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β -lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187 [CrossRef]
    [Google Scholar]
  3. Becher A., Schweizer H. P. 2000; Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 29:948–952
    [Google Scholar]
  4. Brencic A., McFarland K. A., McManus H. R., Castang S., Mogno I., Dove S. L., Lory S. 2009; The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73:434–445 [CrossRef]
    [Google Scholar]
  5. DeVries C. A., Ohman D. E. 1994; Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT , encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol 176:6677–6687
    [Google Scholar]
  6. Doggett R. G. 1969; Incidence of mucoid Pseudomonas aeruginosa from clinical sources. Appl Microbiol 18:936–937
    [Google Scholar]
  7. Evans L. R., Linker A. 1973; Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa . J Bacteriol 116:915–924
    [Google Scholar]
  8. Farinha M. A., Kropinski A. M. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172:3496–3499
    [Google Scholar]
  9. Fick R. B. Jr, Sonoda F., Hornick D. B. 1992; Emergence and persistence of Pseudomonas aeruginosa in the cystic fibrosis airway. Semin Respir Infect 7:168–178
    [Google Scholar]
  10. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  11. Firoved A. M., Deretic V. 2003; Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa . J Bacteriol 185:1071–1081 [CrossRef]
    [Google Scholar]
  12. Firoved A. M., Boucher J. C., Deretic V. 2002; Global genomic analysis of AlgU ( σ E)-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 184:1057–1064 [CrossRef]
    [Google Scholar]
  13. Gallagher L. A., Manoil C. 2001; Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214 [CrossRef]
    [Google Scholar]
  14. Girlich D., Naas T., Nordmann P. 2004; Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 48:2043–2048 [CrossRef]
    [Google Scholar]
  15. Giwercman B., Jensen E. T., Høiby N., Kharazmi A., Costerton J. W. 1991; Induction of β -lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother 35:1008–1010 [CrossRef]
    [Google Scholar]
  16. Govan J. R., Harris G. S. 1986; Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiol Sci 3:302–308
    [Google Scholar]
  17. Greenberg E. P. 2000; Bacterial genomics. Pump up the versatility. Nature 406:947–948 [CrossRef]
    [Google Scholar]
  18. Griffith K. L., Wolf R. E. Jr 2002; Measuring β -galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 290:397–402 [CrossRef]
    [Google Scholar]
  19. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O'Gara F., Haas D. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13:232–237 [CrossRef]
    [Google Scholar]
  20. Hentzer M., Wu H., Andersen J. B., Riedel K., Rasmussen T. B., Bagge N., Kumar N., Schembri M. A., Song Z. other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815 [CrossRef]
    [Google Scholar]
  21. Hershberger C. D., Ye R. W., Parsek M. R., Xie Z.-D., Chakrabarty A. M. 1995; The algT ( algU ) gene of Pseudomonas aeruginosa , a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigmaE. Proc Natl Acad Sci U S A 92:7941–7945 [CrossRef]
    [Google Scholar]
  22. Høiby N. 1975; Prevalence of mucoid strains of Pseudomonas aeruginosa in bacteriological specimens from patients with cystic fibrosis and patients with other diseases. Acta Pathol Microbiol Scand Suppl 83:549–552
    [Google Scholar]
  23. Holloway B. W., Morgan A. F. 1986; Genome organization in Pseudomonas . Annu Rev Microbiol 40:79–105 [CrossRef]
    [Google Scholar]
  24. Hughes K. T., Mathee K. 1998; The anti-sigma factors. Annu Rev Microbiol 52:231–286 [CrossRef]
    [Google Scholar]
  25. Kessler E., Safrin M., Olson J. C., Ohman D. E. 1993; Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 268:7503–7508
    [Google Scholar]
  26. Kong K. F., Jayawardena S. R., Del Puerto A., Wiehlmann L., Laabs U., Tummler B., Mathee K. 2005a; Characterization of poxB , a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. Gene 358:82–92 [CrossRef]
    [Google Scholar]
  27. Kong K. F., Jayawardena S. R., Indulkar S. D., Del Puerto A., Koh C. L., Høiby N., Mathee K. 2005b; Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β -lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 49:4567–4575 [CrossRef]
    [Google Scholar]
  28. Kong K. F., Schneper L., Mathee K. 2010; β -Lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 118:1–36
    [Google Scholar]
  29. Lindberg F., Normark S. 1987; Common mechanism of ampC β -lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 β -lactamase gene. J Bacteriol 169:758–763
    [Google Scholar]
  30. Lindquist S., Lindberg F., Normark S. 1989; Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC β -lactamase gene. J Bacteriol 171:3746–3753
    [Google Scholar]
  31. Lodge J. M., Minchin S. D., Piddock L. J., Busby J. W. 1990; Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC β -lactamase. Biochem J 272:627–631
    [Google Scholar]
  32. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222 [CrossRef]
    [Google Scholar]
  33. Malhotra S., Silo-Suh L. A., Mathee K., Ohman D. E. 2000; Proteome analysis of the effect of mucoid conversion on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, dsbA . J Bacteriol 182:6999–7006 [CrossRef]
    [Google Scholar]
  34. Martin D. W., Schurr M. J., Mudd M. H., Govan J. R., Holloway B. W., Deretic V. 1993; Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381 [CrossRef]
    [Google Scholar]
  35. Mathee K., McPherson C. J., Ohman D. E. 1997; Posttranslational control of the algT ( algU )-encoded σ 22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN. J Bacteriol 179:3711–3720
    [Google Scholar]
  36. Mathee K., Ciofu O., Sternberg C., Lindum P. W., Campbell J. I., Jensen P., Johnsen A. H., Givskov M., Ohman D. E. other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357 [CrossRef]
    [Google Scholar]
  37. Mohr C. D., Rust L., Albus A. M., Iglewski B. H., Deretic V. 1990; Expression patterns of genes encoding elastase and controlling mucoidy: co-ordinate regulation of two virulence factors in Pseudomonas aeruginosa isolates from cystic fibrosis. Mol Microbiol 4:2103–2110 [CrossRef]
    [Google Scholar]
  38. Ng W.-L., Bassler B. L. 2009; Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222 [CrossRef]
    [Google Scholar]
  39. Núñez C., Moreno S., Cárdenas L., Soberón-Chávez G., Espín G. 2000; Inactivation of the ampDE operon increases transcription of algD and affects morphology and encystment of Azotobacter vinelandii . J Bacteriol 182:4829–4835 [CrossRef]
    [Google Scholar]
  40. Ohman D. E., Chakrabarty A. M. 1982; Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect Immun 37:662–669
    [Google Scholar]
  41. Pedersen S. S. 1992; Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl 28:1–79
    [Google Scholar]
  42. Pesci E. C., Pearson J. P., Seed P. S., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3127–3132
    [Google Scholar]
  43. Preston M. J., Seed P. C., Toder D. S., Iglewski B. H., Ohman D. E., Gustin J. K., Goldberg J. B., Pier G. B. 1997; Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65:3086–3090
    [Google Scholar]
  44. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902 [CrossRef]
    [Google Scholar]
  45. Ramos D., Heydorn A., Koh C.-L., Mathee K. 2003; Loss of alginate production in mucoid Pseudomonas aeruginosa occurs via deregulation of the alternative sigma factor AlgT. In Proceedings of the National Conference on Undergraduate Research (NCUR) pp 1–9 University of Utah; Salt Lake City, Utah:
    [Google Scholar]
  46. Rolinson G. N. 1998; Forty years of β -lactam research. J Antimicrob Chemother 41:589–603 [CrossRef]
    [Google Scholar]
  47. Schuster M., Greenberg E. P. 2006; A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa . Int J Med Microbiol 296:73–81 [CrossRef]
    [Google Scholar]
  48. Schweizer H. P. 1993; Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834
    [Google Scholar]
  49. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa . Gene 158:15–22 [CrossRef]
    [Google Scholar]
  50. Sifri C. D., Begun J., Ausubel F. M. 2005; The worm has turned – microbial virulence modeled in Caenorhabditis elegans . Trends Microbiol 13:119–127 [CrossRef]
    [Google Scholar]
  51. Tan M.-W., Mahajan-Miklos S., Ausubel F. M. 1999; Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96:715–720 [CrossRef]
    [Google Scholar]
  52. Van Delden C., Iglewski B. H. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560 [CrossRef]
    [Google Scholar]
  53. Wagner V. E., Gillis R. J., Iglewski B. H. 2004; Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa . Vaccine 22:S15–S20 [CrossRef]
    [Google Scholar]
  54. Wood L. F., Leech A. J., Ohman D. E. 2006; Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa : Roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.021600-0
Loading
/content/journal/jmm/10.1099/jmm.0.021600-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error