1887

Abstract

This study focused on changes in selected parameters of humoral and cellular immunity following vaccination of mice with unique LPS–protein-complexed conjugates. The detoxified LPS (dLPS)-derived antigenic structures O-specific polysaccharide (O-SP) and de--acylated LPS (DeOAc-LPS) were used to prepare glycoconjugates by linking both dLPSs to glucan, the immunomodulating matrix, and then to BSA carrier. Animals were given a primary vaccination and boosted at 2-week intervals with a dose of 4.5 μg saccharide antigen. The last boost was given either subcutaneously or intraperitoneally (i.p.) to compare the boosting effect and to optimize the effective immunization route. Both conjugates (O-SP–BSA and DeOAc-LPS–BSA) induced significant levels of antigen-specific Ig isotypes, especially IgG and IgM. The i.p. booster route was more effective. A T helper 1 response was achieved only by immunization with O-SP–BSA conjugate administered i.p. Significant acceleration of phagocytic capacity and respiratory burst of neutrophils was demonstrated by both immunogenic formulations. Activation of T- and B-cell adaptive immunities was exhibited as specific changes in CD3 : CD19 and CD4 : CD8 ratios, B-cell low-affinity Fc II and III receptor expression and induction of CD45R antigen.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020875-0
2010-12-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/12/1440.html?itemId=/content/journal/jmm/10.1099/jmm.0.020875-0&mimeType=html&fmt=ahah

References

  1. Adams, L. B. & Siebeling, R. J. ( 1984; ). Production of Vibrio cholerae O1 and non-O1 typing sera in rabbits immunized with polysaccharide–protein carrier conjugates. J Clin Microbiol 19, 181–186.
    [Google Scholar]
  2. Boutonnier, A., Villeneuve, S., Nato, F., Dassy, B. & Fournier, J.-M. ( 2001; ). Preparation, immunogenicity, and protective efficacy, in a murine model, of a conjugate vaccine composed of the polysaccharide moiety of the lipopolysaccharide of Vibrio cholerae O139 bound to tetanus toxoid. Infect Immun 69, 3488–3493.[CrossRef]
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  4. Castro, A., Bemer, V., Nóbrega, A., Coutinho, A. & Truffa-Bachi, P. ( 1998; ). Administration to mouse of endotoxin from Gram-negative bacteria leads to activation and apoptosis of T lymphocytes. Eur J Immunol 28, 488–495.[CrossRef]
    [Google Scholar]
  5. Chernyak, A., Kondo, S., Wade, T. K., Meeks, M. D., Alzari, P. M., Fournier, J. M., Taylor, R. K., Kovac, P. & Wade, W. F. ( 2002; ). Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. J Infect Dis 185, 950–962.[CrossRef]
    [Google Scholar]
  6. Conway, M. A., Madrigal-Estebas, L., McClean, S., Brayden, D. J. & Mills, K. H. G. ( 2001; ). Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19, 1940–1950.[CrossRef]
    [Google Scholar]
  7. de Andres, B., Mueller, A. L., Verbeek, S., Sandor, M. & Lynch, R. G. ( 1998; ). A regulatory role for Fcγ receptors CD16 and CD32 in the development of murine B cells. Blood 92, 2823–2829.
    [Google Scholar]
  8. de Andres, B., Hagen, M., Sandor, M., Verbeek, S., Rokhlin, O. & Lynch, R. G. ( 1999; ). A regulatory role for Fcγ receptors (CD16 and 32) in hematopoiesis. Immunol Lett 68, 109–113.[CrossRef]
    [Google Scholar]
  9. Egan, W., Frasch, C. E. & Antony, B. F. ( 1995; ). Lot-release criteria, post licensure quality control and the Haemophilus influenzae type B conjugate vaccines. JAMA 273, 888–889.[CrossRef]
    [Google Scholar]
  10. Farkaš, P. & Bystrický, S. ( 2008; ). Hydrolysis of the terminal dimethylacetal moiety on the spacers bound to carboxy groups containing glucans. Carbohydr Polym 74, 133–136.[CrossRef]
    [Google Scholar]
  11. Goldblatt, D. ( 2000; ). Conjugate vaccines. Clin Exp Immunol 119, 1–3.[CrossRef]
    [Google Scholar]
  12. Gordon, S. ( 2007; ). The macrophage – past, present and future. Eur J Immunol 37, S9–S17.[CrossRef]
    [Google Scholar]
  13. Grandjean, C., Boutonnier, A., Dassay, B., Fournier, J.-M. & Mulard, L. A. ( 2009; ). Investigation towards bivalent chemically defined glycoconjugate immunogens prepared from acid-detoxified lipopolysaccharide of Vibrio cholerae O1, serotype Inaba. Glycoconj J 26, 41–55.[CrossRef]
    [Google Scholar]
  14. Gupta, R. K., Szu, S. C., Filkenstein, R. A. & Robbins, J. B. ( 1992; ). Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect Immun 60, 3201–3208.
    [Google Scholar]
  15. Gupta, R. K., Taylor, D. N., Bryla, D. A., Robbins, J. B. & Szu, S. C. ( 1998; ). Phase 1 evaluation of Vibrio cholerae O1, serotype Inaba, polysaccharide–cholera toxin conjugates in adult volunteers. Infect Immun 66, 3095–3099.
    [Google Scholar]
  16. Guttormsen, H. K., Sharpe, A. H., Chandraker, A. K., Brigtsen, A. K., Sayegh, M. H. & Kasper, L. ( 1999; ). Cognate stimulatory B-cell–T-cell interactions are critical for T-cell help recruited by glycoconjugate vaccines. Infect Immun 67, 6375–6384.
    [Google Scholar]
  17. Hirano, T., Jiao, X., Chen, Z., Waes, C. V. & Gu, X. X. ( 2006; ). Kinetics of mouse antibody and lymphocyte responses during intranasal vaccination with a lipooligosaccharide-based conjugate vaccine. Immunol Lett 107, 131–139.[CrossRef]
    [Google Scholar]
  18. Hisatsune, K., Yamamoto, F. & Kondo, S. ( 1985; ). Lipopolysaccharide of Vibrio cholerae: chemical and serological properties. In Advances in Research on Cholera and Related Diarrhoeas, pp. 17–24. Edited by Kuwahara, S. & Pierce, N. F.. Tokyo. : KTK Scientific Publishers.
    [Google Scholar]
  19. Jansen, W. T. M., Väkeväinen-Anttila, M., Käyhty, H., Nahm, M., Bakker, N., Verhoef, J., Snippe, H. & Verheul, A. F. M. ( 2001; ). Comparison of a classical phagocytosis assay and a flow cytometry assay for assessment of the phagocytic capacity of sera from adults vaccinated with a pneumococcal conjugate vaccine. Clin Diagn Lab Immunol 8, 245–250.
    [Google Scholar]
  20. Kelly, D. F., Snape, M. D., Perrett, K. P., Clutterbuck, E. A., Lewis, S., Blanchard-Rohner, G., Jones, M., Yu, L.-M. & Pollard, A. J. ( 2009; ). Plasma and memory B-cell kinetics in infants following a primary schedule of CRM197-conjugated serogroup C meningococcal polysaccharide vaccine. Immunology 127, 134–143.[CrossRef]
    [Google Scholar]
  21. Kossaczka, Z., Shiloh, J., Johnsson, V., Taylor, D. N., Finkelstein, R. A., Robbins, J. B. & Szu, S. C. ( 2000; ). Vibrio cholerae O139 conjugate vaccines: synthesis and immunogenicity of Vibrio cholerae O139 capsular polysaccharide conjugates with recombinant diphtheria toxin mutant in mice. Infect Immun 68, 5037–5043.[CrossRef]
    [Google Scholar]
  22. Lefeber, D. J., Benaissa-Trouw, B., Vliegenthart, J. F. G., Kamerling, J. P., Jansen, W. T. M., Kraaijeveld, K. & Snippe, H. ( 2003; ). Th1-directing adjuvants increase the immunogenicity of oligosaccharide–protein conjugate vaccines related to Streptococcus pneumoniae type 3. Infect Immun 71, 6915–6920.[CrossRef]
    [Google Scholar]
  23. Machová, E., Bystrický, S., Gáliková, A. & Kogan, G. ( 2002; ). Preparation of a subcellular conjugate with the lipopolysaccharide from Vibrio cholerae 01 using β-d-glucan as matrix. Eur J Med Chem 37, 681–687.[CrossRef]
    [Google Scholar]
  24. Mosley, W. H., Feely, J. C. & Pittman, M. ( 1968; The interrelationships of serological responses in humans, and the active mouse protection test to cholera vaccine effectiveness. In International Symposium on Enterobacterial Vaccines. Series on Immunobiological Standards 1968, vol. 15, pp. 185–196. Edited by R. H. Regamey, M. Stanic & J. Ungar. Basel: Karger.
  25. Palermo, M. S., Rosa, F. A., Alonso, G. F. & Isturiz, A. ( 1997; ). Fc-γ receptor-dependent clearance is enhanced following lipopolysaccharide in vivo treatment. Immunology 92, 536–543.[CrossRef]
    [Google Scholar]
  26. Paulovičová, E., Machová, E., Hoštacká, A. & Bystrický, S. ( 2006; ). Immunological properties of complex conjugates based on Vibrio cholerae O1 Ogawa lipopolysaccharide antigen. Clin Exp Immunol 144, 521–527.[CrossRef]
    [Google Scholar]
  27. Paulovičová, E., Kováčová, E. & Bystrický, S. ( 2010; ). Vibrio cholerae O1 Ogawa detoxified lipopolysaccharide structures as inducers of cytokines and oxidative species in macrophages. J Med Microbiol 59, 158–164.[CrossRef]
    [Google Scholar]
  28. Pierres, M., Rebouah, J. P., Kourilsky, F. M., Dosseto, M., Mercier, P., Mawas, C. & Malissen, B. ( 1981; ). Cross-reactions between mouse Ia and human HLA-D/DR antigens analyzed with monoclonal alloantibodies. J Immunol 126, 2424–2429.
    [Google Scholar]
  29. Poulton, T. A., Gallagher, A., Potts, R. C. & Beck, J. S. ( 1988; ). Changes in activation markers and cell membrane receptors on human peripheral blood T lymphocytes during cell cycle progression after PHA stimulation. Immunology 64, 419–425.
    [Google Scholar]
  30. Rodríguez, M. E., Van der Pol, W. L. & Van de Winkel, J. G. J. ( 2001; ). Flow cytometry-based phagocytosis assay for sensitive detection of opsonic activity of pneumococcal capsular polysaccharide antibodies in human sera. J Immunol Methods 252, 33–44.[CrossRef]
    [Google Scholar]
  31. Saksena, R., Ma, X., Wade, T. K., Kováč, P. & Wade, W. F. ( 2005; ). Effect of saccharide length on the immunogenicity of neoglycoconjugates from synthetic fragments of the O-SP of Vibrio cholerae O1, serotype Ogawa. Carbohydr Res 340, 2256–2269.[CrossRef]
    [Google Scholar]
  32. Saksena, R., Ma, X., Wade, T. K., Kováč, P. & Wade, W. F. ( 2006; ). Length of the linker and the interval between immunizations influences the efficacy of Vibrio cholerae O1, Ogawa hexasaccharide neoglycoconjugates. FEMS Immunol Med Microbiol 47, 116–128.[CrossRef]
    [Google Scholar]
  33. Salerno-Gonçalves, R. & Sztein, M. B. ( 2006; ). Cell-mediated immunity and the challenges for vaccine development. Trends Microbiol 14, 536–542.[CrossRef]
    [Google Scholar]
  34. Stuart, L. M. & Ezekowitz, R. A. B. ( 2005; ). Phagocytosis: elegant complexity. Immunity 22, 539–550.[CrossRef]
    [Google Scholar]
  35. Wade, W. F. ( 2006; ). B-cell responses to lipopolysaccharide epitopes: who sees what first – does it matter? Am J Reprod Immunol 56, 329–336.[CrossRef]
    [Google Scholar]
  36. Watanabe, Y. & Akaike, T. ( 1994; ). Activation signal induces the expression of B cell-specific CD45R epitope (6B2) on murine T cells. Scand J Immunol 39, 419–425.[CrossRef]
    [Google Scholar]
  37. Westphal, O. & Jann, K. ( 1965; ). Bacterial lipopolysaccharides: extraction with phenol–water and further applications of the procedure. Methods Carbohydr Chem 5, 83–91.
    [Google Scholar]
  38. Zuercher, A. W., Imboden, M. A., Jampen, S., Bosse, D., Ulrich, M., Chtioui, H., Lauterburg, B. H. & Lang, A. B. ( 2005; ). Cellular immunity in healthy volunteers treated with an octavalent conjugate Pseudomonas aeruginosa vaccine. Clin Exp Immunol 142, 381–387.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020875-0
Loading
/content/journal/jmm/10.1099/jmm.0.020875-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error