1887

Abstract

A simple paper smear (PS) method for dry collection and storage of cervical specimens was employed to develop an easy multiplex (MPX) PCR for simultaneous detection of generic human papillomaviruses (HPVs) as well as typing of the high-risk HPV-16 and -18, the two clinically most important HPV genotypes, which are responsible for more than 80 % of cervical cancers. Multiplexing was performed with a small amount of DNA eluted by boiling from a single PS punch in a single tube and using a mixture of four pairs of primers specific for the HPV L1 consensus sequence, HPV-16, HPV-18 and the -globin gene. Sixty HPV-positive biopsies and corresponding PS specimens from cervical cancer patients as well as cervical smears from 100 healthy women with or without abnormal cytology were collected both as PSs and in PBS. Detection of HPV DNA from cervical biopsies collected in PBS and corresponding cervical scrapes on a PS or in PBS by conventional and MPX-PCR showed a concordance of 100 % and adequacy of 93 %. A similar comparative study in cervical scrapes from normal women also revealed 100 % concordance. The technique was validated in a multicentric study at four different national laboratories. PSs collected by different centres showed variable adequacy (73–82 %) but the use of multiple PS discs for DNA extraction significantly increased the adequacy. Integration of PSs with MPX-PCR for the detection and typing of HPVs is a highly convenient, efficient, simple and cost-effective method for large-scale clinico-epidemiological studies and is also suitable for HPV vaccine monitoring programmes in resource-poor settings.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.019240-0
2010-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/11/1303.html?itemId=/content/journal/jmm/10.1099/jmm.0.019240-0&mimeType=html&fmt=ahah

References

  1. Banura, C., Franceschi, S., van Doorn, L. J., Wabwire-Mangen, F., Mbidde, E. K. & Weiderpass, E. ( 2008; ). Detection of cervical human papillomavirus infection in filter paper samples: a comparative study. J Med Microbiol 57, 253–255.[CrossRef]
    [Google Scholar]
  2. Beebe, J. L. & Briggs, L. C. ( 1990; ). Evaluation of enzyme-linked immunoassay systems for detection of human immunodeficiency virus type 1 antibody from filter paper disks impregnated with whole blood. J Clin Microbiol 28, 808–810.
    [Google Scholar]
  3. Bosch, F. X. & de Sanjosé, S. ( 2003; ). Human papillomavirus and cervical cancer – burden and assessment of causality. J Natl Cancer Inst Monogr, 3–13.
    [Google Scholar]
  4. Bosch, F. X., Lorincz, A., Muñoz, N., Meijer, C. J. & Shah, K. V. ( 2002; ). The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55, 244–265.[CrossRef]
    [Google Scholar]
  5. Burd, E. M. ( 2003; ). Human papillomavirus and cervical cancer. Clin Microbiol Rev 16, 1–17.[CrossRef]
    [Google Scholar]
  6. Coutlée, F., Gravitt, P., Richardson, H., Hankins, C., Franco, E., Lapointe, N. & Voyer, H., The Canadian Women's HIV Study Group ( 1999; ). Nonisotopic detection and typing of human papillomavirus DNA in genital samples by the line blot assay. J Clin Microbiol 37, 1852–1857.
    [Google Scholar]
  7. Cuzick, J., Terry, G., Ho, L., Hollingworth, T. & Anderson, M. ( 1992; ). Human papillomavirus type 16 in cervical smears as predictor of high-grade cervical intraepithelial neoplasia [corrected]. Lancet 339, 959–960.[CrossRef]
    [Google Scholar]
  8. Das, B. C., Sharma, J. K., Gopalkrishna, V., Das, D. K., Singh, V., Gissmann, L., zur Hausen, H. & Luthra, U. K. ( 1992; ). A high frequency of human papillomavirus DNA sequences in cervical carcinomas of Indian women as revealed by Southern blot hybridization and polymerase chain reaction. J Med Virol 36, 239–245.[CrossRef]
    [Google Scholar]
  9. Das, B. C., Hussain, S., Nasare, V. & Bharadwaj, M. ( 2008; ). Prospects and prejudices of human papillomavirus vaccines in India. Vaccine 26, 2669–2679.[CrossRef]
    [Google Scholar]
  10. Ferlay, J., Bray, F., Pisani, P. & Parkin, D. M. ( 2004; ). GLOBOCAN 2002. Cancer Incidence, Mortality and Prevalence Worldwide, vol. 5, version 2.0. Lyon: IARC.
  11. Garrick, M. D., Dembure, P. & Guthrie, R. ( 1973; ). Sickle-cell anemia and other hemoglobinopathies. Procedures and strategy for screening employing spots of blood on filter paper as specimens. N Engl J Med 288, 1265–1268.[CrossRef]
    [Google Scholar]
  12. Gheit, T., Billoud, G., de Koning, M. N., Gemignani, F., Forslund, O., Sylla, B. S., Vaccarella, S., Franceschi, S., Landi, S. & other authors ( 2007; ). Development of a sensitive and specific multiplex PCR method combined with DNA microarray primer extension to detect betapapillomavirus types. J Clin Microbiol 45, 2537–2544.[CrossRef]
    [Google Scholar]
  13. Gopalkrishna, V., Francis, A., Sharma, J. K. & Das, B. C. ( 1992; ). A simple and rapid method of high quantity DNA isolation from cervical scrapes for detection of human papillomavirus infection. J Virol Methods 36, 63–72.[CrossRef]
    [Google Scholar]
  14. Gravitt, P. E., Peyton, C. L., Alessi, T. Q., Wheeler, C. M., Coutlee, F., Hildesheim, A., Schiffman, M. H., Scott, D. R. & Apple, R. J. ( 2000; ). Improved amplification of genital human papillomaviruses. J Clin Microbiol 38, 357–361.
    [Google Scholar]
  15. Gupta, B. P., Jayasuryan, N. & Jameel, S. ( 1992; ). Direct detection of hepatitis B virus from dried blood spots by polymerase chain reaction amplification. J Clin Microbiol 30, 1913–1916.
    [Google Scholar]
  16. Han, J., Swan, D. C., Smith, S. J., Lum, S. H., Sefers, S. E., Unger, E. R. & Tang, Y. W. ( 2006; ). Simultaneous amplification and identification of 25 human papillomavirus types with Templex technology. J Clin Microbiol 44, 4157–4162.[CrossRef]
    [Google Scholar]
  17. Harper, D. M., Franco, E. L., Wheeler, C. M., Moscicki, A. B., Romanowski, B., Roteli-Martins, C. M., Jenkins, D., Schuind, A., Costa Clemens, S. A. & other authors ( 2006; ). Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255.[CrossRef]
    [Google Scholar]
  18. Jacobs, M. V., Snijders, P. J., van den Brule, A. J., Helmerhorst, T. J., Meijer, C. J. & Walboomers, J. M. ( 1997; ). A general primer GP5+/GP6+-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol 35, 791–795.
    [Google Scholar]
  19. Kailash, U., Hedau, S., Gopalkrishna, V., Katiyar, S. & Das, B. C. ( 2002; ). A simple ‘paper smear’ method for dry collection, transport and storage of cervical cytological specimens for rapid screening of HPV infection by PCR. J Med Microbiol 51, 606–610.
    [Google Scholar]
  20. Kain, K. C. & Lanar, D. E. ( 1991; ). Determination of genetic variation within Plasmodium falciparum by using enzymatically amplified DNA from filter paper disks impregnated with whole blood. J Clin Microbiol 29, 1171–1174.
    [Google Scholar]
  21. Lei, Y. J., Gao, C., An, R., Shi, Q., Chen, J. M., Yuan, Y. K., Wang, C., Han, J. & Dong, X. P. ( 2008; ). Development of a multiplex PCR method for detecting and typing human papillomaviruses in verrucae vulgaris. J Virol Methods 147, 72–77.[CrossRef]
    [Google Scholar]
  22. Maeda, M., Ito, K., Arakawa, H. & Tsuji, A. ( 1985; ). An enzyme-linked immunosorbent assay for thyroxine in dried blood spotted on filter paper. J Immunol Methods 82, 83–89.[CrossRef]
    [Google Scholar]
  23. Manos, M. M., Ting, Y., Wright, D. K., Lewis, A. J., Broker, T. R. & Wolinsky, S. M. ( 1989; ). Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells, 209–213.
    [Google Scholar]
  24. Muñoz, N., Castellsagué, X., de González, A. B. & Gissmann, L. ( 2006; ). HPV in the etiology of human cancer. Vaccine 24 (Suppl. 3), S1–S10.
    [Google Scholar]
  25. Nishiwaki, M., Yamamoto, T., Tone, S., Murai, T., Ohkawara, T., Matsunami, T., Koizumi, M., Takagi, Y., Yamaguchi, J. & other authors ( 2008; ). Genotyping of human papillomaviruses by a novel one-step typing method with multiplex PCR and clinical applications. J Clin Microbiol 46, 1161–1168.[CrossRef]
    [Google Scholar]
  26. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. ( 2005; ). Global cancer statistics, 2002. CA Cancer J Clin 55, 74–108.[CrossRef]
    [Google Scholar]
  27. Quint, W. G., Scholte, G., van Doorn, L. J., Kleter, B., Smits, P. H. & Lindeman, J. ( 2001; ). Comparative analysis of human papillomavirus infections in cervical scrapes and biopsy specimens by general SPF10 PCR and HPV genotyping. J Pathol 194, 51–58.[CrossRef]
    [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  29. Sankaranarayanan, R., Nene, B. M., Shastri, S. S., Jayant, K., Muwonge, R., Budukh, A. M., Hingmire, S., Malvi, S. G., Thorat, R. & other authors ( 2009; ). HPV screening for cervical cancer in rural India. N Engl J Med 360, 1385–1394.[CrossRef]
    [Google Scholar]
  30. Schmitt, M., Dondog, B., Waterboer, T. & Pawlita, M. ( 2008; ). Homogeneous amplification of genital human alpha papillomaviruses by PCR using novel broad-spectrum GP5+ and GP6+ primers. J Clin Microbiol 46, 1050–1059.[CrossRef]
    [Google Scholar]
  31. Sotlar, K., Diemer, D., Dethleffs, A., Hack, Y., Stubner, A., Vollmer, N., Menton, S., Menton, M., Dietz, K. & other authors ( 2004; ). Detection and typing of human papillomavirus by E6 nested multiplex PCR. J Clin Microbiol 42, 3176–3184.[CrossRef]
    [Google Scholar]
  32. van Doorn, L. J., Quint, W., Kleter, B., Molijn, A., Colau, B., Martin, M. T., Kravang, I., Torrez-Martinez, N., Peyton, C. L. & other authors ( 2002; ). Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF10 line probe assay. J Clin Microbiol 40, 979–983.[CrossRef]
    [Google Scholar]
  33. Vernon, S. D., Unger, E. R. & Williams, D. ( 2000; ). Comparison of human papillomavirus detection and typing by cycle sequencing, line blotting, and hybrid capture. J Clin Microbiol 38, 651–655.
    [Google Scholar]
  34. Villa, L. L., Costa, R. L., Petta, C. A., Andrade, R. P., Paavonen, J., Iversen, O. E., Olsson, S. E., Hoye, J., Steinwall, M. & other authors ( 2006; ). High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br J Cancer 95, 1459–1466.[CrossRef]
    [Google Scholar]
  35. Wallin, K. L., Wiklund, F., Angstrom, T., Bergman, F., Stendahl, U., Wadell, G., Hallmans, G. & Dillner, J. ( 1999; ). Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. N Engl J Med 341, 1633–1638.[CrossRef]
    [Google Scholar]
  36. Wilkinson, D. ( 2008; ). International standards (IS)/reagents for HPV assays. In WHO HPV LabNet Newsletter, no. 3, pp. 4–5. Geneva: World Health Organization, Immunization, Vaccines and Biologicals.
  37. zur Hausen, H. & de Villiers, E. M. ( 1994; ). Human papillomaviruses. Annu Rev Microbiol 48, 427–447.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.019240-0
Loading
/content/journal/jmm/10.1099/jmm.0.019240-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error