Preview this article:
Zoom in

Coexistence of multiple antimicrobial-resistance genes in a carbapenem-resistant clinical isolate from China, Page 1 of 1

| /docserver/preview/fulltext/jmm/59/5/622-1.gif

There is no abstract available for this article.
Use the preview function to the left.


Article metrics loading...

Loading full text...

Full text loading...



  1. Cendejas E., Gómez-Gil R., Gómez-Sánchez P., Mingorance J. 2010; Detection and characterization of Enterobacteriaceae producing metallo- β -lactamases in a tertiary-care hospital in Spain. Clin Microbiol Infect 16:181–183 [CrossRef]
    [Google Scholar]
  2. CLSI 2008; Performance Standards for Antimicrobial Susceptibility Testing ; 18th Informational Supplement. M100-S18. Wayne, PA: Clinical and Laboratory Standards Institute;
  3. Kitchel B., Rasheed J. K., Patel J. B., Srinivasan A., Navon-Venezia S., Carmeli Y., Brolund A., Giske C. G. 2009; Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53:3365–3370 [CrossRef]
    [Google Scholar]
  4. Lee H. K., Park Y. J., Kim J. Y., Chang E., Cho S. G., Chae H. S., Kang C. S. 2005; Prevalence of decreased susceptibility to carbapenems among Serratia marcescens , Enterobacter cloacae , and Citrobacter freundii and investigation of carbapenemases. Diagn Microbiol Infect Dis 52:331–336 [CrossRef]
    [Google Scholar]
  5. Park C. H., Robicsek A., Jacoby G. A., Sahm D., Hooper D. C. 2006a; Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 50:3953–3955 [CrossRef]
    [Google Scholar]
  6. Park Y. J., Lee S., Yu J. K., Woo G. J., Lee K., Arakawa Y. 2006b; Co-production of 16S rRNA methylases and extended-spectrum β -lactamases in AmpC-producing Enterobacter cloacae , Citrobacter freundii and Serratia marcescens in Korea. J Antimicrob Chemother 58:907–908 [CrossRef]
    [Google Scholar]
  7. Perez-Perez F. J., Hanson N. D. 2002; Detection of plasmid-mediated AmpC β -lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162 [CrossRef]
    [Google Scholar]
  8. Rasheed J. K., Biddle J. W., Anderson K. F., Washer L., Chenoweth C., Perrin J., Newton D. W., Patel J. B. 2008; Detection of the Klebsiella pneumoniae carbapenemase type 2 carbapenem-hydrolyzing enzyme in clinical isolates of Citrobacter freundii and K. oxytoca carrying a common plasmid. J Clin Microbiol 46:2066–2069 [CrossRef]
    [Google Scholar]
  9. Robicsek A., Strahilevitz J., Sahm D. F., Jacoby G. A., Hooper D. C. 2006; qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother 50:2872–2874 [CrossRef]
    [Google Scholar]
  10. Shen P., Wei Z., Jiang Y., Du X., Ji S., Yu Y., Li L. 2009; Novel genetic environment of the carbapenem-hydrolysing β -lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother 53:4333–4338 [CrossRef]
    [Google Scholar]
  11. Tamang M. D., Seol S. Y., Oh J. Y., Kang H. Y., Lee J. C., Lee Y. C., Cho D. T., Kim J. 2008; Plasmid-mediated quinolone resistance determinants qnrA , qnrB , and qnrS among clinical isolates of Enterobacteriaceae in a Korean hospital. Antimicrob Agents Chemother 52:4159–4162 [CrossRef]
    [Google Scholar]
  12. Yu Y., Ji S., Chen Y., Zhou W., Wei Z., Li L., Ma Y. 2007; Resistance of strains producing extended-spectrum β -lactamases and genotype distribution in China. J Infect 54:53–57 [CrossRef]
    [Google Scholar]
  13. Yu F., Wang L., Pan J., Yao D., Chen C., Zhu T., Lou Q., Hu J., Wu Y. other authors 2009; Prevalence of 16S rRNA methylase genes in Klebsiella pneumoniae isolates from a Chinese teaching hospital: coexistence of rmtB and armA genes in the same isolate. Diagn Microbiol Infect Dis 64:57–63 [CrossRef]
    [Google Scholar]
  14. Zhang R., Yang L., Cai J. C., Zhou H. W., Chen G. X. 2008; High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol 57:332–337 [CrossRef]
    [Google Scholar]

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error