1887

Abstract

The ability to characterize accurately the cause of infection is fundamental to effective treatment. The impact of any antimicrobial agents used to treat infection will, however, always be constrained by both the appropriateness of their use and our ability to determine their effectiveness. Traditional culture-based diagnostic microbiology is, in many cases, unable to provide this information. Molecular microbiological approaches that assess the content of clinical samples in a culture-independent manner promise to change dramatically the types of data that are obtained routinely from clinical samples. We argue that, in addition to the technical advance that these methodologies offer, a conceptual advance in the way that we reflect on the information generated is also required. Through the development of both of these advances, our understanding of infection, as well as the ways in which infections can be treated, may be improved. In the analysis of the microbiological content of certain clinical samples, such as blood, cerebrospinal fluid, brain and bone biopsy, culture-independent approaches have been well documented. Herein, we discuss how extensions to such studies can shape our understanding of infection at the many sites of the human body where a mixed flora, or in more ecological terms, a community of microbes, is present. To do this, we consider the underlying principles that underpin diagnostic systems, describe the ways in which these systems can be applied to community characterization, and discuss the significance of the data generated. We propose that at all locations within the human body where infection is routinely initiated within the context of a community of microbes, the same principles will apply. To consider this further, we take insights from areas such as the gut, oral cavity and skin. The main focus here is understanding respiratory tract infection, and specifically the infections of the cystic fibrosis lung. The impact that the use of culture-independent, molecular analyses will have on the way we approach the treatment of infections is also considered.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.013334-0
2009-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/11/1401.html?itemId=/content/journal/jmm/10.1099/jmm.0.013334-0&mimeType=html&fmt=ahah

References

  1. Accurso, F. J. ( 1997; ). Early pulmonary disease in cystic fibrosis. Curr Opin Pulm Med 3, 400–403.[CrossRef]
    [Google Scholar]
  2. Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. ( 2008; ). Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J 3, 243–251.
    [Google Scholar]
  3. Anderson, M., Bollinger, D., Hagler, A., Hartwell, H., Rivers, B., Ward, K. & Steck, T. R. ( 2004; ). Viable but nonculturable bacteria are present in mouse and human urine specimens. J Clin Microbiol 42, 753–758.[CrossRef]
    [Google Scholar]
  4. Andersson, S. G., Zomorodipour, A., Winkler, H. H. & Kurland, C. G. ( 1995; ). Unusual organization of the rRNA genes in Rickettsia prowazekii. J Bacteriol 177, 4171–4175.
    [Google Scholar]
  5. Andersson, S., Kuttuva Rajarao, G., Land, C. J. & Dalhammar, G. ( 2008; ). Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol Lett 283, 83–90.[CrossRef]
    [Google Scholar]
  6. Armstrong, D. S., Grimwood, K., Carzino, R., Carlin, J. B., Olinsky, A. & Phelan, P. D. ( 1995; ). Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 310, 1571–1572.[CrossRef]
    [Google Scholar]
  7. Azzari, C., Moriondo, M., Indolfi, G., Massai, C., Becciolini, L., De Martino, M. & Resti, M. ( 2008; ). Molecular detection methods and serotyping performed directly on clinical samples improve diagnostic sensitivity and reveal increased incidence of invasive disease by Streptococcus pneumoniae in Italian children. J Med Microbiol 57, 1205–1212.[CrossRef]
    [Google Scholar]
  8. Balfour-Lynn, I. A. & Elborn, J. S. ( 2007; ). Respiratory Disease: Infection, 3rd edn, pp. 137–158. Edited by M. Hodson, D. Geddes & A. Bush. London: Hodder Arnold.
  9. Bennett, P. M. ( 2008; ). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153 (Suppl. 1), S347–S357.[CrossRef]
    [Google Scholar]
  10. Benson, R., Tondella, M. L., Bhatnagar, J., Carvalho Mda, G., Sampson, J. S., Talkington, D. F., Whitney, A. M., Mothershed, E., McGee, L. & other authors ( 2008; ). Development and evaluation of a novel multiplex PCR technology for molecular differential detection of bacterial respiratory disease pathogens. J Clin Microbiol 46, 2074–2077.[CrossRef]
    [Google Scholar]
  11. Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L. & other authors ( 2008; ). Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59.[CrossRef]
    [Google Scholar]
  12. Bercovier, H., Kafri, O. & Sela, S. ( 1986; ). Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun 136, 1136–1141.[CrossRef]
    [Google Scholar]
  13. Bergseng, H., Bevanger, L., Rygg, M. & Bergh, K. ( 2007; ). Real-time PCR targeting the sip gene for detection of group B streptococcus colonization in pregnant women at delivery. J Med Microbiol 56, 223–228.[CrossRef]
    [Google Scholar]
  14. Bittar, F., Richet, H., Dubus, J. C., Reynaud-Gaubert, M., Stremler, N., Sarles, J., Raoult, D. & Rolain, J. M. ( 2008; ). Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS One 3, e2908 [CrossRef]
    [Google Scholar]
  15. Bouchara, J. P., Hsieh, H. Y., Croquefer, S., Barton, R., Marchais, V., Pihet, M. & Chang, T. C. ( 2009; ). Development of an oligonucleotide array for direct detection of fungi in sputum samples from patients with cystic fibrosis. J Clin Microbiol 47, 142–152.[CrossRef]
    [Google Scholar]
  16. Boucher, R. C. ( 2004; ). New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23, 146–158.[CrossRef]
    [Google Scholar]
  17. Boussaud, V., Guillemain, R., Grenet, D., Coley, N., Souilamas, R., Bonnette, P. & Stern, M. ( 2008; ). Clinical outcome following lung transplantation in cystic fibrosis patients colonized with Burkholderia cepacia complex: results from two French centers. Thorax 63, 732–737.[CrossRef]
    [Google Scholar]
  18. Bowler, P. G. ( 2003; ). The 105 bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy Wound Manage 49, 44–53.
    [Google Scholar]
  19. Bowler, P. G. & Davies, B. J. ( 1999; ). The microbiology of infected and noninfected leg ulcers. Int J Dermatol 38, 573–578.[CrossRef]
    [Google Scholar]
  20. Bowler, P. G., Duerden, B. I. & Armstrong, D. G. ( 2001; ). Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14, 244–269.[CrossRef]
    [Google Scholar]
  21. Braslavsky, I., Hebert, B., Kartalov, E. & Quake, S. R. ( 2003; ). Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100, 3960–3964.[CrossRef]
    [Google Scholar]
  22. Britto, M. T., Kotagal, U. R., Hornung, R. W., Atherton, H. D., Tsevat, J. & Wilmott, R. W. ( 2002; ). Impact of recent pulmonary exacerbations on quality of life in patients with cystic fibrosis. Chest 121, 64–72.[CrossRef]
    [Google Scholar]
  23. Brock, T. D., Madigan, M. T., Martinko, J. M. & Parker, J. ( 1994; ). Biology of Microorganisms, 7th edn. Englewood Cliffs, NJ: Prentice-Hall.
  24. Brogden, K. A., Guthmiller, J. M. & Taylor, C. E. ( 2005; ). Human polymicrobial infections. Lancet 365, 253–255.[CrossRef]
    [Google Scholar]
  25. Brook, I. & Fink, R. ( 1983; ). Transtracheal aspiration in pulmonary infection in children with cystic fibrosis. Eur J Respir Dis 64, 51–57.
    [Google Scholar]
  26. Brown, S. P. & Buckling, A. ( 2008; ). A social life for discerning microbes. Cell 135, 600–603.[CrossRef]
    [Google Scholar]
  27. Butaye, P., Cloeckaert, A. & Schwarz, S. ( 2003; ). Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents 22, 205–210.[CrossRef]
    [Google Scholar]
  28. Cato, M. P. & Varro, M. T. ( 1935; ). On Agriculture, Loeb Classical Library no. 283. Cambridge, MA: Harvard University Press.
  29. Chavez de Paz, L. E. ( 2007; ). Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod 33, 652–662.[CrossRef]
    [Google Scholar]
  30. Chiba, N., Murayama, S. Y., Morozumi, M., Nakayama, E., Okada, T., Iwata, S., Sunakawa, K. & Ubukata, K. ( 2009; ). Rapid detection of eight causative pathogens for the diagnosis of bacterial meningitis by real-time PCR. J Infect Chemother 15, 92–98.[CrossRef]
    [Google Scholar]
  31. Chia, J.-H., Su, L.-H, Lin, P.-Y., Chiu, C.-H., Kuo, A.-J., Sun, C.-F. & Wu, T.-L. ( 2004; ). Comparison of multiplex polymerase chain reaction, culture, and serology for the diagnosis of Bordetella pertussis infection. Chang Gung Med J 27, 408–415.
    [Google Scholar]
  32. Christensen, L. D., Moser, C., Jensen, P. O., Rasmussen, T. B., Christophersen, L., Kjelleberg, S., Kumar, N., Hoiby, N., Givskov, M. & Bjarnsholt, T. ( 2007; ). Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153, 2312–2320.[CrossRef]
    [Google Scholar]
  33. Clarridge, J. E., III ( 2004; ). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17, 840–862.[CrossRef]
    [Google Scholar]
  34. Clunes, M. T. & Boucher, R. C. ( 2007; ). Cystic fibrosis: the mechanisms of pathogenesis of an inherited lung disorder. Drug Discov Today Dis Mech 4, 63–72.
    [Google Scholar]
  35. Coakley, R. D. & Boucher, R. C. ( 2007; ). Pathophysiology: Epithelial Cell Biology and Ion Channel Function in the Lung, Sweat Gland and Pancreas, 3rd edn, pp. 59–68. Edited by M. Hodson, D. Geddes & A. Bush. London: Hodder Arnold.
  36. Coenye, T., Goris, J., Spilker, T., Vandamme, P. & LiPuma, J. J. ( 2002; ). Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40, 2062–2069.[CrossRef]
    [Google Scholar]
  37. Cole, P. ( 1997; ). The damaging role of bacteria in chronic lung infection. J Antimicrob Chemother 40 (Suppl. A), 5–10.
    [Google Scholar]
  38. Colwell, R. R. ( 2000; ). Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6, 121–125.[CrossRef]
    [Google Scholar]
  39. Costerton, J. W. ( 2005; ). Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res 437, 7–11.
    [Google Scholar]
  40. Cotgreave, P. & Forseth, I. ( 2002; ). Introductory Ecology. Oxford: Blackwell Science.
  41. Coulter, P., Lema, C., Flayhart, D., Linhardt, A. S., Aucott, J. N., Auwaerter, P. G. & Dumler, J. S. ( 2005; ). Two-year evaluation of Borrelia burgdorferi culture and supplemental tests for definitive diagnosis of Lyme disease. J Clin Microbiol 43, 5080–5084.[CrossRef]
    [Google Scholar]
  42. Cremonini, F., Canducci, F., Di Caro, S., Santarelli, L., Armuzzi, A., Gasbarrini, G. & Gasbarrini, A. ( 2001; ). Helicobacter pylori treatment: a role for probiotics? Dig Dis 19, 144–147.[CrossRef]
    [Google Scholar]
  43. CFF ( 2007; ). Cystic Fibrosis Foundation Patient Registry 2007 Annual Data Report to the Center Directors. Bethesda, MA: Cystic Fibrosis Foundation. http://www.cff.org/UploadedFiles/research/ClinicalResearch/2007-Patient-Registry-Report.pdf
  44. CFT ( 2007; ). UK CF Registry Annual Data Report 2007. Bromley, UK. Bromley: Cystic Fibrosis Trust. http://www.cftrust.org.uk/aboutcf/publications/cfregistryreports/UK_CF_Registry_Annual_Data_Report_2007.pdf
  45. Davies, C. E., Hill, K. E., Wilson, M. J., Stephens, P., Hill, C. M., Harding, K. G. & Thomas, D. W. ( 2004; ). Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42, 3549–3557.[CrossRef]
    [Google Scholar]
  46. Davies, P. L., Maxwell, N. C. & Kotecha, S. ( 2006; ). The role of inflammation and infection in the development of chronic lung disease of prematurity. Adv Exp Med Biol 582, 101–110.
    [Google Scholar]
  47. Davis, P. B. ( 1999; ). Clinical pathophysiology and manifestations of lung disease. In Cystic Fibrosis in Adults, pp. 45–46–67. Edited by J. R. Yankaskas & M. R. Knowles. Philedalphia, PA: Lippincott-Raven.
  48. Denny, F. W. ( 1974; ). Effect of a toxin produced by Haemophilus influenzae on ciliated respiratory epithelium. J Infect Dis 129, 93–100.[CrossRef]
    [Google Scholar]
  49. Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. ( 2007; ). Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414.[CrossRef]
    [Google Scholar]
  50. Dow, G., Browne, A. & Sibbald, R. G. ( 1999; ). Infection in chronic wounds: controversies in diagnosis and treatment. Ostomy Wound Manage 45, 23–27.
    [Google Scholar]
  51. Dowd, S. E., Sun, Y., Secor, P. R., Rhoads, D. D., Wolcott, B. M., James, G. A. & Wolcott, R. D. ( 2008; ). Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8, 43 [CrossRef]
    [Google Scholar]
  52. Dubey, S. K., Tripathi, A. K. & Upadhyay, S. N. ( 2006; ). Exploration of soil bacterial communities for their potential as bioresource. Bioresour Technol 97, 2217–2224.[CrossRef]
    [Google Scholar]
  53. Eberl, L. & Tümmler, B. ( 2004; ). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int J Med Microbiol 294, 123–131.[CrossRef]
    [Google Scholar]
  54. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  55. Ecker, D. J., Drader, J. J., Gutierrez, J., Gutierrez, A., Hannis, J. C., Schink, A., Sampath, R., Blyn, L. B., Eshoo, M. W. & other authors ( 2006; ). The Ibis T5000 Universal Biosensor: an automated platform for pathogen identification and strain typing. JALA 11, 341–351.
    [Google Scholar]
  56. Ecker, D. J., Sampath, R., Massire, C., Blyn, L. B., Hall, T. A., Eshoo, M. W. & Hofstadler, S. A. ( 2008; ). Ibis T5000: a universal biosensor approach for microbiology. Nat Rev Microbiol 6, 553–558.[CrossRef]
    [Google Scholar]
  57. Edwards, R. & Harding, K. G. ( 2004; ). Bacteria and wound healing. Curr Opin Infect Dis 17, 91–96.[CrossRef]
    [Google Scholar]
  58. Espy, M. J., Uhl, J. R., Sloan, L. M., Buckwalter, S. P., Jones, M. F., Vetter, E. A., Yao, J. D., Wengenack, N. L., Rosenblatt, J. E. & other authors ( 2006; ). Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19, 165–256.[CrossRef]
    [Google Scholar]
  59. Fabricius, L., Dahlen, G., Ohman, A. E. & Moller, A. J. ( 1982; ). Predominant indigenous oral bacteria isolated from infected root canals after varied times of closure. Scand J Dent Res 90, 134–144.
    [Google Scholar]
  60. Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. ( 1998; ). Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62, 1157–1170.
    [Google Scholar]
  61. Favier, C. F., Vaughan, E. E., De Vos, W. M. & Akkermans, A. D. ( 2002; ). Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68, 219–226.[CrossRef]
    [Google Scholar]
  62. Fenollar, F. & Raoult, D. ( 2004; ). Molecular genetic methods for the diagnosis of fastidious microorganisms. APMIS 112, 785–807.[CrossRef]
    [Google Scholar]
  63. Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. ( 2007; ). Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9, 1101–1111.[CrossRef]
    [Google Scholar]
  64. Fontaine, L., Boutry, C., Guedon, E., Guillot, A., Ibrahim, M., Grossiord, B. & Hols, P. ( 2007; ). Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J Bacteriol 189, 7195–7205.[CrossRef]
    [Google Scholar]
  65. Fracastoro, G. (1930). Hieronymi Fracastorii de Contagione et Contagiosis Morbis et Eorum Curatione, libri III. London: G. P. Putnam's Sons.
  66. Gauduchon, V., Chalabreysse, L., Etienne, J., Celard, M., Benito, Y., Lepidi, H., Thivolet-Bejui, F. & Vandenesch, F. ( 2003; ). Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol 41, 763–766.[CrossRef]
    [Google Scholar]
  67. Gest, H. ( 2008; ). Scotoma in contemporary microbiology. Microbiol Today 35, 220
    [Google Scholar]
  68. Gibson, R. L., Burns, J. L. & Ramsey, B. W. ( 2003; ). Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168, 918–951.[CrossRef]
    [Google Scholar]
  69. Gilligan, P. H. ( 1991; ). Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4, 35–51.
    [Google Scholar]
  70. Gjodsbol, K., Christensen, J. J., Karlsmark, T., Jorgensen, B., Klein, B. M. & Krogfelt, K. A. ( 2006; ). Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3, 225–231.[CrossRef]
    [Google Scholar]
  71. Goss, C. H. & Burns, J. L. ( 2007; ). Exacerbations in cystic fibrosis. I. Epidemiology and pathogenesis. Thorax 62, 360–367.[CrossRef]
    [Google Scholar]
  72. Graham, A., Steel, D. M., Wilson, R., Cole, P. J., Alton, E. W. & Geddes, D. M. ( 1993; ). Effects of purified Pseudomonas rhamnolipids on bioelectric properties of sheep tracheal epithelium. Exp Lung Res 19, 77–89.[CrossRef]
    [Google Scholar]
  73. Grenier, D. & Mayrand, D. ( 1986; ). Nutritional relationships between oral bacteria. Infect Immun 53, 616–620.
    [Google Scholar]
  74. Hamilton-Miller, J. M. ( 2003; ). The role of probiotics in the treatment and prevention of Helicobacter pylori infection. Int J Antimicrob Agents 22, 360–366.[CrossRef]
    [Google Scholar]
  75. Harris, K. A. & Hartley, J. C. ( 2003; ). Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J Med Microbiol 52, 685–691.[CrossRef]
    [Google Scholar]
  76. Harris, J. K., De Groote, M. A., Sagel, S. D., Zemanick, E. T., Kapsner, R., Penvari, C., Kaess, H., Deterding, R. R., Accurso, F. J. & Pace, N. R. ( 2007; ). Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci U S A 104, 20529–20533.[CrossRef]
    [Google Scholar]
  77. Heijerman, H. ( 2005; ). Infection and inflammation in cystic fibrosis: a short review. J Cyst Fibros 4 (Suppl. 2), 3–5.[CrossRef]
    [Google Scholar]
  78. Hill, G. B. ( 1993; ). The microbiology of bacterial vaginosis. Am J Obstet Gynecol 169, 450–454.[CrossRef]
    [Google Scholar]
  79. Hill, K. E., Davies, C. E., Wilson, M. J., Stephens, P., Harding, K. G. & Thomas, D. W. ( 2003; ). Molecular analysis of the microflora in chronic venous leg ulceration. J Med Microbiol 52, 365–369.[CrossRef]
    [Google Scholar]
  80. Hoffman, L. R., Deziel, E., D'Argenio, D. A., Lepine, F., Emerson, J., McNamara, S., Gibson, R. L., Ramsey, B. W. & Miller, S. I. ( 2006; ). Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 103, 19890–19895.[CrossRef]
    [Google Scholar]
  81. Holland, D. J., Wesley, A., Drinkovic, D. & Currie, B. J. ( 2002; ). Cystic fibrosis and Burkholderia pseudomallei infection: an emerging problem? Clin Infect Dis 35, e138–e140.[CrossRef]
    [Google Scholar]
  82. Jalava, J., Skurnik, M., Toivanen, A., Toivanen, P. & Eerola, E. ( 2001; ). Bacterial PCR in the diagnosis of joint infection. Ann Rheum Dis 60, 287–289.[CrossRef]
    [Google Scholar]
  83. Janssens, J. C., De Keersmaecker, S. C., De Vos, D. E. & Vanderleyden, J. ( 2008; ). Small molecules for interference with cell-cell-communication systems in Gram-negative bacteria. Curr Med Chem 15, 2144–2156.[CrossRef]
    [Google Scholar]
  84. Jayaraman, A. & Wood, T. K. ( 2008; ). Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10, 145–167.[CrossRef]
    [Google Scholar]
  85. Jenkinson, H. F. & Lamont, R. J. ( 2005; ). Oral microbial communities in sickness and in health. Trends Microbiol 13, 589–595.[CrossRef]
    [Google Scholar]
  86. Juste, A., Thomma, B. P. & Lievens, B. ( 2008; ). Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25, 745–761.[CrossRef]
    [Google Scholar]
  87. Kane, S. R., Letant, S. E., Murphy, G. A., Alfaro, T. M., Krauter, P. W., Mahnke, R., Legler, T. C. & Raber, E. ( 2008; ). Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. J Microbiol Methods 76, 278–284.
    [Google Scholar]
  88. Kanthakumar, K., Taylor, G., Tsang, K. W., Cundell, D. R., Rutman, A., Smith, S., Jeffery, P. K., Cole, P. J. & Wilson, R. ( 1993; ). Mechanisms of action of Pseudomonas aeruginosa pyocyanin on human ciliary beat in vitro. Infect Immun 61, 2848–2853.
    [Google Scholar]
  89. Katznelson, D. ( 2006; ). On the complexity of the pulmonary microbiology in cystic fibrosis: thoughts of a clinician. Isr Med Assoc J 8, 49–52.
    [Google Scholar]
  90. Kiran, M. D., Giacometti, A., Cirioni, O. & Balaban, N. ( 2008; ). Suppression of biofilm related, device-associated infections by staphylococcal quorum sensing inhibitors. Int J Artif Organs 31, 761–770.
    [Google Scholar]
  91. Kobayashi, H. ( 2005; ). Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections. Treat Respir Med 4, 241–253.[CrossRef]
    [Google Scholar]
  92. Koch, R. ( 1884; ). Die Aetiologie der Tuberkulose. Mittheilungen aus dem Kaiserlichen Gesundheitsamte 2, 1–88 (in German).
    [Google Scholar]
  93. Kolenbrander, P. E., Palmer, R. J., Jr, Rickard, A. H., Jakubovics, N. S., Chalmers, N. I. & Diaz, P. I. ( 2006; ). Bacterial interactions and successions during plaque development. Periodontol 2000 42, 47–79.[CrossRef]
    [Google Scholar]
  94. Lambiase, A., Raia, V., Del Pezzo, M., Sepe, A., Carnovale, V. & Rossano, F. ( 2006; ). Microbiology of airway disease in a cohort of patients with cystic fibrosis. BMC Infect Dis 6, 4 [CrossRef]
    [Google Scholar]
  95. Lee, J., Jayaraman, A. & Wood, T. K. ( 2007; ). Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7, 42 [CrossRef]
    [Google Scholar]
  96. Li, J., Helmerhorst, E. J., Leone, C. W., Troxler, R. F., Yaskell, T., Haffajee, A. D., Socransky, S. S. & Oppenheim, F. G. ( 2004; ). Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97, 1311–1318.[CrossRef]
    [Google Scholar]
  97. Liljemark, W. F. & Bloomquist, C. ( 1996; ). Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med 7, 180–198.[CrossRef]
    [Google Scholar]
  98. Liou, T. G., Adler, F. R., Fitzsimmons, S. C., Cahill, B. C., Hibbs, J. R. & Marshall, B. C. ( 2001; ). Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol 153, 345–352.[CrossRef]
    [Google Scholar]
  99. Loux, H. R. & Coplin, W. M. L. ( 1902; ). Chronic phagedaena due to mixed infection. Ann Surg 35, 586–597.
    [Google Scholar]
  100. Lutgendorff, F., Akkermans, L. M. & Soderholm, J. D. ( 2008; ). The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr Mol Med 8, 282–298.[CrossRef]
    [Google Scholar]
  101. Machan, Z. A., Taylor, G. W., Pitt, T. L., Cole, P. J. & Wilson, R. ( 1992; ). 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30, 615–623.[CrossRef]
    [Google Scholar]
  102. Mahony, J. B. ( 2008; ). Detection of respiratory viruses by molecular methods. Clin Microbiol Rev 21, 716–747.[CrossRef]
    [Google Scholar]
  103. Malik, S., Beer, M., Megharaj, M. & Naidu, R. ( 2008; ). The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34, 265–276.[CrossRef]
    [Google Scholar]
  104. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J. & other authors ( 2005; ). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.
    [Google Scholar]
  105. Matsui, H., Grubb, B. R., Tarran, R., Randell, S. H., Gatzy, J. T., Davis, C. W. & Boucher, R. C. ( 1998; ). Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015.[CrossRef]
    [Google Scholar]
  106. Miller, M. H., Edberg, S. C., Mandel, L. J., Behar, C. F. & Steigbigel, N. H. ( 1980; ). Gentamicin uptake in wild-type and aminoglycoside-resistant small-colony mutants of Staphylococcus aureus. Antimicrob Agents Chemother 18, 722–729.[CrossRef]
    [Google Scholar]
  107. Molina, A., Del Campo, R., Máiz, L., Morosini, M. I., Lamas, A., Baquero, F. & Canton, R. ( 2008; ). High prevalence in cystic fibrosis patients of multiresistant hospital-acquired methicillin-resistant Staphylococcus aureus ST228-SCCmecI capable of biofilm formation. J Antimicrob Chemother 62, 961–967.[CrossRef]
    [Google Scholar]
  108. Monte, S. V., Paolini, N. M., Slazak, E. M., Schentag, J. J. & Paladino, J. A. ( 2008; ). Costs of treating lower respiratory tract infections. Am J Manag Care 14, 190–196.
    [Google Scholar]
  109. Moreau-Marquis, S., Stanton, B. A. & O'Toole, G. A. ( 2008; ). Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 21, 595–599.[CrossRef]
    [Google Scholar]
  110. Munro, N. C., Barker, A., Rutman, A., Taylor, G., Watson, D., McDonald-Gibson, W. J., Towart, R., Taylor, W. A., Wilson, R. & Cole, P. J. ( 1989; ). Effect of pyocyanin and 1-hydroxyphenazine on in vivo tracheal mucus velocity. J Appl Physiol 67, 316–323.
    [Google Scholar]
  111. Murray, C. J. & Lopez, A. D. ( 1997; ). Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349, 1269–1276.[CrossRef]
    [Google Scholar]
  112. Murray, M. P., Turnbull, K., Macquarrie, S. & Hill, A. T. ( 2008; ). Assessing response to treatment of exacerbations of bronchiectasis in adults. Eur Respir J 33, 312–318.[CrossRef]
    [Google Scholar]
  113. Nadell, C. D., Xavier, J. B. & Foster, K. R. ( 2009; ). The sociobiology of biofilms. FEMS Microbiol Rev 33, 206–224.[CrossRef]
    [Google Scholar]
  114. Nocker, A., Burr, M. & Camper, A. K. ( 2007; ). Genotypic microbial community profiling: a critical technical review. Microb Ecol 54, 276–289.[CrossRef]
    [Google Scholar]
  115. Nyvad, B. & Kilian, M. ( 1990; ). Microflora associated with experimental root surface caries in humans. Infect Immun 58, 1628–1633.
    [Google Scholar]
  116. O'Carroll, M. R., Kidd, T. J., Coulter, C., Smith, H. V., Rose, B. R., Harbour, C. & Bell, S. C. ( 2003; ). Burkholderia pseudomallei: another emerging pathogen in cystic fibrosis. Thorax 58, 1087–1091.[CrossRef]
    [Google Scholar]
  117. Odum, E. P. ( 1969; ). The strategy of ecosystem development. Science 164, 262–270.[CrossRef]
    [Google Scholar]
  118. Palmer, K. L., Aye, L. M. & Whiteley, M. ( 2007a; ). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189, 8079–8087.[CrossRef]
    [Google Scholar]
  119. Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A. & Brown, P. O. ( 2007b; ). Development of the human infant intestinal microbiota. PLoS Biol 5, e177 [CrossRef]
    [Google Scholar]
  120. Pamp, S. J., Gjermansen, M., Johansen, H. K. & Tolker-Nielsen, T. ( 2008; ). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68, 223–240.[CrossRef]
    [Google Scholar]
  121. Parkins, M. D., Sibley, C. D., Surette, M. G. & Rabin, H. R. ( 2008; ). The Streptococcus milleri group – an unrecognized cause of disease in cystic fibrosis: a case series and literature review. Pediatr Pulmonol 43, 490–497.[CrossRef]
    [Google Scholar]
  122. Parsek, M. R. & Singh, P. K. ( 2003; ). Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57, 677–701.[CrossRef]
    [Google Scholar]
  123. Persson, R., Hitti, J., Verhelst, R., Vaneechoutte, M., Persson, R., Hirschi, R., Weibel, M., Rothen, M., Paul, K. & other authors ( 2009; ). The vaginal microflora in relation to gingivitis. BMC Infect Dis 9, 6 [CrossRef]
    [Google Scholar]
  124. Podglajen, I., Bellery, F., Poyart, C., Coudol, P., Buu-Hoi, A., Bruneval, P. & Mainardi, J. L. ( 2003; ). Comparative molecular and microbiologic diagnosis of bacterial endocarditis. Emerg Infect Dis 9, 1543–1547.
    [Google Scholar]
  125. Proctor, R. A., von Eiff, C., Kahl, B. C., Becker, K., McNamara, P., Herrmann, M. & Peters, G. ( 2006; ). Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4, 295–305.[CrossRef]
    [Google Scholar]
  126. Prosser, J. I., Bohannan, B. J., Curtis, T. P., Ellis, R. J., Firestone, M. K., Freckleton, R. P., Green, J. L., Green, L. E., Killham, K. & other authors ( 2007; ). The role of ecological theory in microbial ecology. Nat Rev Microbiol 5, 384–392.[CrossRef]
    [Google Scholar]
  127. Pybus, V. & Onderdonk, A. B. ( 1999; ). Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vaginosis. Microbes Infect 1, 285–292.[CrossRef]
    [Google Scholar]
  128. Rainey, F. A., Ward-Rainey, N. L., Janssen, P. H., Hippe, H. & Stackebrandt, E. ( 1996; ). Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142, 2087–2095.[CrossRef]
    [Google Scholar]
  129. Ramsey, B. W. ( 1996; ). Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 335, 179–188.[CrossRef]
    [Google Scholar]
  130. Ramsey, B. W., Wentz, K. R., Smith, A. L., Richardson, M., Williams-Warren, J., Hedges, D. L., Gibson, R., Redding, G. J., Lent, K. & Harris, K. ( 1991; ). Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. Am Rev Respir Dis 144, 331–337.[CrossRef]
    [Google Scholar]
  131. Rantakokko-Jalava, K., Nikkari, S., Jalava, J., Eerola, E., Skurnik, M., Meurman, O., Ruuskanen, O., Alanen, A., Kotilainen, E. & other authors ( 2000; ). Direct amplification of rRNA genes in diagnosis of bacterial infections. J Clin Microbiol 38, 32–39.
    [Google Scholar]
  132. Raoult, D., Birg, M. L., La Scola, B., Fournier, P. E., Enea, M., Lepidi, H., Roux, V., Piette, J. C., Vandenesch, F. & other authors ( 2000; ). Cultivation of the bacillus of Whipple's disease. N Engl J Med 342, 620–625.[CrossRef]
    [Google Scholar]
  133. Raoult, D., Fournier, P. E. & Drancourt, M. ( 2004; ). What does the future hold for clinical microbiology? Nat Rev Microbiol 2, 151–159.[CrossRef]
    [Google Scholar]
  134. Razvi, S. & Saiman, L. ( 2007; ). Microbiology of Cystic Fibrosis: Role of the Clinical Microbiology Laboratory, Susceptibility and Synergy Studies and Infection Control, 3rd edn, pp. 123–133. Edited by M. Hodson, D. Geddes & A. Bush. London: Hodder Arnold.
  135. Read, R. C., Roberts, P., Munro, N., Rutman, A., Hastie, A., Shryock, T., Hall, R., McDonald-Gibson, W., Lund, V. & Taylor, G. ( 1992; ). Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol 72, 2271–2277.
    [Google Scholar]
  136. Regelmann, W. E., Elliott, G. R., Warwick, W. J. & Clawson, C. C. ( 1990; ). Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone. Am Rev Respir Dis 141, 914–921.[CrossRef]
    [Google Scholar]
  137. Renders, N., Verbrugh, H. & Van Belkum, A. ( 2001; ). Dynamics of bacterial colonisation in the respiratory tract of patients with cystic fibrosis. Infect Genet Evol 1, 29–39.[CrossRef]
    [Google Scholar]
  138. Renesto, P., Crapoulet, N., Ogata, H., La Scola, B., Vestris, G., Claverie, J. M. & Raoult, D. ( 2003; ). Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362, 447–449.[CrossRef]
    [Google Scholar]
  139. Robson, M. C., Mannari, R. J., Smith, P. D. & Payne, W. G. ( 1999; ). Maintenance of wound bacterial balance. Am J Surg 178, 399–402.[CrossRef]
    [Google Scholar]
  140. Rogers, G. B., Hart, C. A., Mason, J. R., Hughes, M., Walshaw, M. J. & Bruce, K. D. ( 2003; ). Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 41, 3548–3558.[CrossRef]
    [Google Scholar]
  141. Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G. & Bruce, K. D. ( 2004; ). Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 42, 5176–5183.[CrossRef]
    [Google Scholar]
  142. Rogers, G. B., Carroll, M. P., Connett, G. J., Serisiear, D. J., Hockey, P. M., Kehagia, V. & Jones, G. R. ( 2005a; ). Bacterial community diversity in the CF lung. Pediatr Pulmonol 40 (S28), 95–97.
    [Google Scholar]
  143. Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Kehagia, V., Jones, G. R. & Bruce, K. D. ( 2005b; ). Bacterial activity in cystic fibrosis lung infections. Respir Res 6, 49 [CrossRef]
    [Google Scholar]
  144. Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G., Kehagia, V., Connett, G. J. & Bruce, K. D. ( 2006; ). Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol 44, 2601–2604.[CrossRef]
    [Google Scholar]
  145. Rogers, G. B., Stressmann, F. A., Koller, G., Daniels, T., Carroll, M. P. & Bruce, K. D. ( 2008; ). Assessing the diagnostic importance of nonviable bacterial cells in respiratory infections. Diagn Microbiol Infect Dis 62, 133–141.[CrossRef]
    [Google Scholar]
  146. Rogers, G. B., Daniels, T. T., Tuck, A., Carroll, M. P., Connett, G. J., David, G. J. & Bruce, K. D. ( 2009; ). Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches. BMC Pulm Med 9, 14 [CrossRef]
    [Google Scholar]
  147. Rosey, A. L., Abachin, E., Quesnes, G., Cadilhac, C., Pejin, Z., Glorion, C., Berche, P. & Ferroni, A. ( 2007; ). Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J Microbiol Methods 68, 88–93.[CrossRef]
    [Google Scholar]
  148. Rothman, R. E., Majmudar, M. D., Kelen, G. D., Madico, G., Gaydos, C. A., Walker, T. & Quinn, T. C. ( 2002; ). Detection of bacteremia in emergency department patients at risk for infective endocarditis using universal 16S rRNA primers in a decontaminated polymerase chain reaction assay. J Infect Dis 186, 1677–1681.[CrossRef]
    [Google Scholar]
  149. Rotstein, O. D., Pruett, T. L. & Simmons, R. L. ( 1985; ). Mechanisms of microbial synergy in polymicrobial surgical infections. Rev Infect Dis 7, 151–170.[CrossRef]
    [Google Scholar]
  150. Rovery, C., Greub, G., Lepidi, H., Casalta, J. P., Habib, G., Collart, F. & Raoult, D. ( 2005; ). PCR detection of bacteria on cardiac valves of patients with treated bacterial endocarditis. J Clin Microbiol 43, 163–167.[CrossRef]
    [Google Scholar]
  151. Ryan, T. J. ( 2007; ). Infection following soft tissue injury: its role in wound healing. Curr Opin Infect Dis 20, 124–128.[CrossRef]
    [Google Scholar]
  152. Salyers, A. A., Gupta, A. & Wang, Y. ( 2004; ). Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12, 412–416.[CrossRef]
    [Google Scholar]
  153. Saravolatz, L. D., Manzor, O., VanderVelde, N., Pawlak, J. & Belian, B. ( 2003; ). Broad-range bacterial polymerase chain reaction for early detection of bacterial meningitis. Clin Infect Dis 36, 40–45.[CrossRef]
    [Google Scholar]
  154. Schmitt, H., Stoob, K., Hamscher, G., Smit, E. & Seinen, W. ( 2006; ). Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb Ecol 51, 267–276.[CrossRef]
    [Google Scholar]
  155. Schutte, U. M., Abdo, Z., Bent, S. J., Shyu, C., Williams, C. J., Pierson, J. D. & Forney, L. J. ( 2008; ). Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80, 365–380.[CrossRef]
    [Google Scholar]
  156. Schuurman, T., de Boer, R. F., Kooistra-Smid, A. M. & van Zwet, A. A. ( 2004; ). Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical setting. J Clin Microbiol 42, 734–740.[CrossRef]
    [Google Scholar]
  157. Sethi, S. & Murphy, T. F. ( 2008; ). Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 359, 2355–2365.[CrossRef]
    [Google Scholar]
  158. Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D. & Church, G. M. ( 2005; ). Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732.[CrossRef]
    [Google Scholar]
  159. Sibley, C. D., Rabin, H. & Surette, M. G. ( 2006; ). Cystic fibrosis: a polymicrobial infectious disease. Future Microbiol 1, 53–61.[CrossRef]
    [Google Scholar]
  160. Sibley, C. D., Duan, K., Fischer, C., Parkins, M. D., Storey, D. G., Rabin, H. R. & Surette, M. G. ( 2008a; ). Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 4, e1000184 [CrossRef]
    [Google Scholar]
  161. Sibley, C. D., Parkins, M. D., Rabin, H. R., Duan, K., Norgaard, J. C. & Surette, M. G. ( 2008b; ). A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A 105, 15070–15075.[CrossRef]
    [Google Scholar]
  162. Siqueira, J. F., Jr ( 2002; ). Endodontic infections: concepts, paradigms, and perspectives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94, 281–293.[CrossRef]
    [Google Scholar]
  163. Siqueira, J. F., Jr, Rocas, I. N. & Lopes, H. P. ( 2002; ). Patterns of microbial colonization in primary root canal infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93, 174–178.[CrossRef]
    [Google Scholar]
  164. Sloan, L. M., Duresko, B. J., Gustafson, D. R. & Rosenblatt, J. E. ( 2008; ). Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol 46, 1996–2001.[CrossRef]
    [Google Scholar]
  165. Smith, H. ( 1982; ). The role of microbial interactions in infectious disease. Philos Trans R Soc Lond B Biol Sci 297, 551–561.[CrossRef]
    [Google Scholar]
  166. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D'Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P. & other authors ( 2006; ). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103, 8487–8492.[CrossRef]
    [Google Scholar]
  167. Socransky, S. S. & Haffajee, A. D. ( 2002; ). Dental biofilms: difficult therapeutic targets. Periodontol 2000 28, 12–55.[CrossRef]
    [Google Scholar]
  168. Socransky, S. S., Gibbons, R. J., Dale, A. C., Bortnick, L., Rosenthal, E. & Macdonald, J. B. ( 1963; ). The microbiota of the gingival crevice area of man. I. Total microscopic and viable counts and counts of specific organisms. Arch Oral Biol 8, 275–280.[CrossRef]
    [Google Scholar]
  169. Somerville, M., Taylor, G. W., Watson, D., Rendell, N. B., Rutman, A., Todd, H., Davies, J. R., Wilson, R., Cole, P. & Richardson, P. S. ( 1992; ). Release of mucus glycoconjugates by Pseudomonas aeruginosa rhamnolipid into feline trachea in vivo and human bronchus in vitro. Am J Respir Cell Mol Biol 6, 116–122.[CrossRef]
    [Google Scholar]
  170. Spilker, T., Liwienski, A. A. & LiPuma, J. J. ( 2008; ). Identification of Bordetella spp. in respiratory specimens from individuals with cystic fibrosis. Clin Microbiol Infect 14, 504–506.[CrossRef]
    [Google Scholar]
  171. Stutts, M. J., Schwab, J. H., Chen, M. G., Knowles, M. R. & Boucher, R. C. ( 1986; ). Effects of Pseudomonas aeruginosa on bronchial epithelial ion transport. Am Rev Respir Dis 134, 17–21.
    [Google Scholar]
  172. Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M. D. & Dore, J. ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 4799–4807.
    [Google Scholar]
  173. Tani-Ishii, N., Wang, C. Y., Tanner, A. & Stashenko, P. ( 1994; ). Changes in root canal microbiota during the development of rat periapical lesions. Oral Microbiol Immunol 9, 129–135.[CrossRef]
    [Google Scholar]
  174. Tre-Hardy, M., Mace, C., El Manssouri, N., Vanderbist, F., Traore, H. & Devleeschouwer, M. J. ( 2009; ). Effect of antibiotic co-administration on young and mature biofilms of cystic fibrosis clinical isolates: the importance of the biofilm model. Int J Antimicrob Agents 33, 40–45.[CrossRef]
    [Google Scholar]
  175. Tunney, M. M., Field, T. R., Moriarty, T. F., Patrick, S., Doering, G., Muhlebach, M. S., Wolfgang, M. C., Boucher, R., Gilpin, D. F. & other authors ( 2008; ). Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 177, 995–1001.[CrossRef]
    [Google Scholar]
  176. Vanden Broeck, D., Horvath, C. & De Wolf, M. J. ( 2007; ). Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol 39, 1771–1775.[CrossRef]
    [Google Scholar]
  177. Van der Heijden, M. G., Bardgett, R. D. & van Straalen, N. M. ( 2008; ). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11, 296–310.[CrossRef]
    [Google Scholar]
  178. Veeramachaneni, S. B. & Sethi, S. ( 2006; ). Pathogenesis of bacterial exacerbations of COPD. COPD 3, 109–115.[CrossRef]
    [Google Scholar]
  179. Von Wintzingerode, F., Gobel, U. B. & Stackebrandt, E. ( 1997; ). Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21, 213–229.[CrossRef]
    [Google Scholar]
  180. Voth, D. E. & Ballard, J. D. ( 2005; ). Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18, 247–263.[CrossRef]
    [Google Scholar]
  181. Wang, B. Y. & Kuramitsu, H. K. ( 2005; ). Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl Environ Microbiol 71, 354–362.[CrossRef]
    [Google Scholar]
  182. Waters, C. M. & Bassler, B. L. ( 2005; ). Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21, 319–346.[CrossRef]
    [Google Scholar]
  183. Whelen, A. C. & Persing, D. H. ( 1996; ). The role of nucleic acid amplification and detection in the clinical microbiology laboratory. Annu Rev Microbiol 50, 349–373.[CrossRef]
    [Google Scholar]
  184. Whipple, G. H. ( 1907; ). A hitherto undescribed disease characterized anatomically by deposits of fat and fatty acids in the intestinal and mesenteric lymphatic tissues. Bull Johns Hopkins Hosp 18, 382–383.
    [Google Scholar]
  185. White, G. R. ( 1902; ). VIII. The identity of Proteus infection and hospital gangrene: a case of mixed infection with Aerogenes capsulatus and Proteus vulgaris. Ann Surg 36, 762–766.[CrossRef]
    [Google Scholar]
  186. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. ( 1998; ). Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95, 6578–6583.[CrossRef]
    [Google Scholar]
  187. Wilson, R. & Cole, P. J. ( 1988; ). The effect of bacterial products on ciliary function. Am Rev Respir Dis 138, S49–S53.[CrossRef]
    [Google Scholar]
  188. Winstanley, C. & Fothergill, J. L. ( 2009; ). The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290, 1–9.[CrossRef]
    [Google Scholar]
  189. Woo, P. C., Lau, S. K., Teng, J. L., Tse, H. & Yuen, K. Y. ( 2008; ). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14, 908–934.[CrossRef]
    [Google Scholar]
  190. WHO ( 2004; ). World Health Report 2004. Geneva: World Health Orgnization. http://www.who.int/whr/2004/annex/topic/en/annex_2_en.pdf
  191. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., Birrer, P., Bellon, G., Berger, J. & other authors ( 2002; ). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
  192. Wuertz, S., Okabe, S. & Hausner, M. ( 2004; ). Microbial communities and their interactions in biofilm systems: an overview. Water Sci Technol 49, 327–336.
    [Google Scholar]
  193. Wysocki, A. B. ( 2002; ). Evaluating and managing open skin wounds: colonization versus infection. AACN Clin Issues 13, 382–397.[CrossRef]
    [Google Scholar]
  194. Xavier, J. B. & Foster, K. R. ( 2007; ). Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci U S A 104, 876–881.[CrossRef]
    [Google Scholar]
  195. Yang, L., Haagensen, J. A., Jelsbak, L., Johansen, H. K., Sternberg, C., Hoiby, N. & Molin, S. ( 2008; ). In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol 190, 2767–2776.[CrossRef]
    [Google Scholar]
  196. Yazdankhah, S. P. & Caugant, D. A. ( 2004; ). Neisseria meningitidis: an overview of the carriage state. J Med Microbiol 53, 821–832.[CrossRef]
    [Google Scholar]
  197. Yoon, S. S., Hennigan, R. F., Hilliard, G. M., Ochsner, U. A., Parvatiyar, K., Kamani, M. C., Allen, H. L., DeKievit, T. R., Gardner, P. R. & other authors ( 2002; ). Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3, 593–603.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.013334-0
Loading
/content/journal/jmm/10.1099/jmm.0.013334-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error