1887

Abstract

Ageing is associated with a decline in immune function, which predisposes the elderly to a higher incidence of infections. Information on the mechanism of the age-related increase in susceptibility to serovar Typhimurium ( Typhimurium) is limited. In particular, little is known regarding the involvement of the immune response in this age-related change. We employed streptomycin (Sm)-pretreated C57BL/6 mice to develop a mouse model that would demonstrate age-related differences in susceptibility and immune response to Typhimurium. In this model, old mice inoculated orally with doses of 3×10 or 1×10 c.f.u. Typhimurium had significantly greater Typhimurium colonization in the ileum, colon, Peyer's patches, spleen and liver than young mice. Old mice had significantly higher weight loss than young mice on days 1 and 2 post-infection. In response to Typhimurium infection, old mice failed to increase production of IFN- and TNF- in the spleen and mesenteric lymph node cells to the same degree as observed in young mice; this was associated with their inability to maintain the presence of neutrophils and macrophages at a ‘youthful’ level. These results indicate that Sm-pretreated C57BL/6 old mice are more susceptible to Typhimurium infection than young mice, which might be due to impaired IFN- and TNF- production as well as a corresponding change in the number of neutrophils and macrophages in response to Typhimurium infection compared to young mice.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.013250-0
2009-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/12/1559.html?itemId=/content/journal/jmm/10.1099/jmm.0.013250-0&mimeType=html&fmt=ahah

References

  1. Barthel, M., Hapfelmeier, S., Quintanilla-Martínez, L., Kremer, M., Rohde, M., Hogardt, M., Pfeffer, K., Rüssmann, H. & Hardt, W. D. ( 2003; ). Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71, 2839–2858.[CrossRef]
    [Google Scholar]
  2. Baveye, S., Elass, E., Mazurier, J., Spik, G. & Legrand, D. ( 1999; ). Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med 37, 281–286.
    [Google Scholar]
  3. Chelvarajan, R. L., Collins, S. M., Van Willigen, J. M. & Bondada, S. ( 2005; ). The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function. J Leukoc Biol 77, 503–512.
    [Google Scholar]
  4. Conlan, J. W. ( 1996; ). Neutrophils prevent extracellular colonization of the liver microvasculature by Salmonella typhimurium. Infect Immun 64, 1043–1047.
    [Google Scholar]
  5. Conlan, J. W. ( 1997; ). Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect Immun 65, 630–635.
    [Google Scholar]
  6. De la Fuente, M., Medina, S., Del Rio, M., Ferrández, M. D. & Hernanz, A. ( 2000; ). Effect of aging on the modulation of macrophage functions by neuropeptides. Life Sci 67, 2125–2135.[CrossRef]
    [Google Scholar]
  7. Engwerda, C. R., Fox, B. S. & Handwerger, B. S. ( 1996; ). Cytokine production by T lymphocytes from young and aged mice. J Immunol 156, 3621–3630.
    [Google Scholar]
  8. Gay, R. T., Belisle, S., Beck, M. A. & Meydani, S. N. ( 2006; ). An aged host promotes the evolution of avirulent coxsackievirus into a virulent strain. Proc Natl Acad Sci U S A 103, 13825–13830.[CrossRef]
    [Google Scholar]
  9. Guerrant, R. L., Araujo, V., Soares, E., Kotloff, K., Lima, A. A., Cooper, W. H. & Lee, A. G. ( 1992; ). Measurement of fecal lactoferrin as a marker of fecal leukocytes. J Clin Microbiol 30, 1238–1242.
    [Google Scholar]
  10. Han, S. N., Wu, D., Ha, W. K., Beharka, A., Smith, D. E., Bender, B. S. & Meydani, S. N. ( 2000; ). Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus. Immunology 100, 487–493.[CrossRef]
    [Google Scholar]
  11. Haynes, L., Eaton, S. M., Burns, E. M., Randall, T. D. & Swain, S. L. ( 2003; ). CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A 100, 15053–15058.[CrossRef]
    [Google Scholar]
  12. Hueffer, K. & Galán, J. E. ( 2004; ). Salmonella-induced macrophage death: multiple mechanisms, different outcomes. Cell Microbiol 6, 1019–1025.[CrossRef]
    [Google Scholar]
  13. Jones, B. D. & Falkow, S. ( 1996; ). Salmonellosis: host immune responses and bacterial virulence determinants. Annu Rev Immunol 14, 533–561.[CrossRef]
    [Google Scholar]
  14. Kane, S. V., Sandborn, W. J., Rufo, P. A., Zholudev, A., Boone, J., Lyerly, D., Camilleri, M. & Hanauer, S. B. ( 2003; ). Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation. Am J Gastroenterol 98, 1309–1314.[CrossRef]
    [Google Scholar]
  15. Kirby, A. C., Yrlid, U. & Wick, M. J. ( 2002; ). The innate immune response differs in primary and secondary Salmonella infection. J Immunol 169, 4450–4459.[CrossRef]
    [Google Scholar]
  16. Lalmanach, A. C. & Lantier, F. ( 1999; ). Host cytokine response and resistance to Salmonella infection. Microbes Infect 1, 719–726.[CrossRef]
    [Google Scholar]
  17. Levay, P. F. & Viljoen, M. ( 1995; ). Lactoferrin: a general review. Haematologica 80, 252–267.
    [Google Scholar]
  18. Logsdon, L. K. & Mecsas, J. ( 2006; ). A non-invasive quantitative assay to measure murine intestinal inflammation using the neutrophil marker lactoferrin. J Immunol Methods 313, 183–190.[CrossRef]
    [Google Scholar]
  19. Mocchegiani, E. & Malavolta, M. ( 2004; ). NK and NKT cell functions in immunosenescence. Aging Cell 3, 177–184.[CrossRef]
    [Google Scholar]
  20. Monack, D. M., Raupach, B., Hromockyj, A. E. & Falkow, S. ( 1996; ). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A 93, 9833–9838.[CrossRef]
    [Google Scholar]
  21. Murciano, C., Villamón, E., Yáñez, A., O'Connor, J. E., Gozalbo, D. & Gil, M. L. ( 2006; ). Impaired immune response to Candida albicans in aged mice. J Med Microbiol 55, 1649–1656.[CrossRef]
    [Google Scholar]
  22. Nauciel, C. & Espinasse-Maes, F. ( 1992; ). Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun 60, 450–454.
    [Google Scholar]
  23. Neutra, M. R., Frey, A. & Kraehenbuhl, J. P. ( 1996; ). Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348.[CrossRef]
    [Google Scholar]
  24. Pinner, R. W., Teutsch, S. M., Simonsen, L., Klug, L. A., Graber, J. M., Clarke, M. J. & Berkelman, R. L. ( 1996; ). Trends in infectious diseases mortality in the United States. JAMA 275, 189–193.[CrossRef]
    [Google Scholar]
  25. Plackett, T. P., Boehmer, E. D., Faunce, D. E. & Kovacs, E. J. ( 2004; ). Aging and innate immune cells. J Leukoc Biol 76, 291–299.[CrossRef]
    [Google Scholar]
  26. Renshaw, M., Rockwell, J., Engleman, C., Gewirtz, A., Katz, J. & Sambhara, S. ( 2002; ). Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 169, 4697–4701.[CrossRef]
    [Google Scholar]
  27. Rosenberger, C. M., Gallo, R. L. & Finlay, B. B. ( 2004; ). Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci U S A 101, 2422–2427.[CrossRef]
    [Google Scholar]
  28. Santos, R. L., Zhang, S., Tsolis, R. M., Kingsley, R. A., Adams, L. G. & Bäumler, A. J. ( 2001; ). Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3, 1335–1344.[CrossRef]
    [Google Scholar]
  29. Schmucker, D. L., Heyworth, M. F., Owen, R. L. & Daniels, C. K. ( 1996; ). Impact of aging on gastrointestinal mucosal immunity. Dig Dis Sci 41, 1183–1193.[CrossRef]
    [Google Scholar]
  30. Schmucker, D. L., Thoreux, K. & Owen, R. L. ( 2001; ). Aging impairs intestinal immunity. Mech Ageing Dev 122, 1397–1411.[CrossRef]
    [Google Scholar]
  31. Tite, J. P., Dougan, G. & Chatfield, S. N. ( 1991; ). The involvement of tumor necrosis factor in immunity to Salmonella infection. J Immunol 147, 3161–3164.
    [Google Scholar]
  32. Vassiloyanakopoulos, A. P., Okamoto, S. & Fierer, J. ( 1998; ). The crucial role of polymorphonuclear leukocytes in resistance to Salmonella dublin infections in genetically susceptible and resistant mice. Proc Natl Acad Sci U S A 95, 7676–7681.[CrossRef]
    [Google Scholar]
  33. World Health Organization ( 2005; ). Drug-resistant Salmonella. Factsheet no. 139. www.who.int/mediacentre/factsheets/fs139/en/print.html.
  34. Yoshikawa, T. T. ( 2000; ). Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis 30, 931–933.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.013250-0
Loading
/content/journal/jmm/10.1099/jmm.0.013250-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error