1887

Abstract

Demystification of microbial behaviour in mixed biofilms could have a major impact on our understanding of infectious diseases. The objectives of this study were to evaluate the interactions of six different species and a Gram-negative coliform, , in dual-species biofilms, and to assess the effect of LPS on biofilm formation. A single isolate of ATCC 25922 and six different species of , ATCC 90028, ATCC 90030, ATCC 6258, ATCC 13803, ATCC 22019 and MYA-646, were studied using a standard biofilm assay. Each species was co-cultured with on a polystyrene surface and biofilm formation was quantified by a c.f.u. assay. The biofilm was then analysed by Live/Dead staining and fluorescence microscopy (confocal laser-scanning microscopy, CLSM), whilst scanning electron microscopy (SEM) was employed to visualize the biofilm architecture. The effect of LPS on biofilm cell activity at defined time intervals was assessed with an XTT reduction assay. A significant quantitative reduction in c.f.u. counts of (after 90 min), (after 90 min and 24 h), (after 24 h) and (after 24 and 48 h) was noted on incubation with in comparison with their monospecies biofilm counterparts ( <0.05). On the other hand, a simultaneous and significant reduction in cell numbers occurred on co-culture with (after 90 min), and an elevation of cell numbers followed co-culture with (after 24 h) and (after 24 h and 48 h) ( <0.05). All quantitative findings were confirmed by SEM and CLSM analyses. By SEM observation, dual-species biofilms demonstrated scanty architecture with reduced visible cell counts at all stages of biofilm development, despite profuse growth and dense colonization in their single-species counterparts. Significantly elevated metabolic activity, as assessed by XTT readings, was observed in LPS-treated and biofilms (after 48 h), whilst this had the opposite effect for (after 24 h) ( <0.05). These data indicate that and species in a mixed-species environment mutually modulate biofilm development, both quantitatively and qualitatively, and that LPS appears to be a key component in mediating these outcomes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.012989-0
2009-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/12/1623.html?itemId=/content/journal/jmm/10.1099/jmm.0.012989-0&mimeType=html&fmt=ahah

References

  1. Akagawa, G., Abe, S. & Yamaguchi, H. ( 1995; ). Mortality of Candida albicans-infected mice is facilitated by superinfection of Escherichia coli or administration of its lipopolysaccharide. J Infect Dis 171, 1539–1544.[CrossRef]
    [Google Scholar]
  2. Banerjee, S. N., Emori, T. G., Culver, D. H., Gaynes, R. P., Jarvis, W. R., Horan, T., Edwards, J. R., Tolson, J., Henderson, T. & Martone, W. J. ( 1991; ). Secular trends in nosocomial primary bloodstream infections in the United States, 1980–1989. National Nosocomial Infections Surveillance System. Am J Med 91, 86S–89S.
    [Google Scholar]
  3. Cardinal, E., Braunstein, E. M., Capello, W. N. & Heck, D. A. ( 1996; ). Candida albicans infection of prosthetic joints. Orthopedics 19, 247–251.
    [Google Scholar]
  4. Carlsson, J. ( 1997; ). Bacterial metabolism in dental biofilms. Adv Dent Res 11, 75–80.[CrossRef]
    [Google Scholar]
  5. Cohn, Z. A. ( 1978; ). Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol 121, 813–816.
    [Google Scholar]
  6. Crump, J. A. & Collignon, P. J. ( 2000; ). Intravascular catheter-associated infections. Eur J Clin Microbiol Infect Dis 19, 1–8.[CrossRef]
    [Google Scholar]
  7. Dahinden, C., Galanos, C. & Fehr, J. ( 1983; ). Granulocyte activation by endotoxin. I. Correlation between adherence and other granulocyte functions, and role of endotoxin structure on biologic activity. J Immunol 130, 857–862.
    [Google Scholar]
  8. Douglas, L. J. ( 2003; ). Candida biofilms and their role in infection. Trends Microbiol 11, 30–36.[CrossRef]
    [Google Scholar]
  9. Gilbert, H. M., Peters, E. D., Lang, S. J. & Hartman, B. J. ( 1996; ). Successful treatment of fungal prosthetic valve endocarditis: case report and review. Clin Infect Dis 22, 348–354.[CrossRef]
    [Google Scholar]
  10. Goldmann, D. A. & Pier, G. B. ( 1993; ). Pathogenesis of infections related to intravascular catheterization. Clin Microbiol Rev 6, 176–192.
    [Google Scholar]
  11. Henricks, P. A., van der Tol, M. E., Thyssen, R. M., van Asbeck, B. S. & Verhoef, J. ( 1983; ). Escherichia coli lipopolysaccharides diminish and enhance cell function of human polymorphonuclear leukocytes. Infect Immun 41, 294–301.
    [Google Scholar]
  12. Henry-Stanley, M. J., Hess, D. J., Erickson, E. A., Garni, R. M. & Wells, C. L. ( 2003; ). Effect of lipopolysaccharide on virulence of intestinal Candida albicans. J Surg Res 113, 42–49.[CrossRef]
    [Google Scholar]
  13. Hummel, R. P., Maley, M. P., Miskell, P. W. & Altemeier, W. A. ( 1975; ). Suppression of Candida albicans by Escherichia coli. J Trauma 15, 413–418.[CrossRef]
    [Google Scholar]
  14. Jin, Y., Samaranayake, L. P., Samaranayake, Y. & Yip, H. K. ( 2004; ). Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 49, 789–798.[CrossRef]
    [Google Scholar]
  15. Jin, Y., Zhang, T., Samaranayake, Y. H., Fang, H. H., Yip, H. K. & Samaranayake, L. P. ( 2005; ). The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 159, 353–360.[CrossRef]
    [Google Scholar]
  16. Joly, V., Belmatoug, N., Leperre, A., Robert, J., Jault, F., Carbon, C. & Yeni, P. ( 1997; ). Pacemaker endocarditis due to Candida albicans: case report and review. Clin Infect Dis 25, 1359–1362.[CrossRef]
    [Google Scholar]
  17. Jones, R. N., Marshall, S. A., Pfaller, M. A., Wilke, W. W., Hollis, R. J., Erwin, M. E., Edmond, M. B. & Wenzel, R. P. ( 1997; ). Nosocomial enterococcal blood stream infections in the SCOPE Program: antimicrobial resistance, species occurrence, molecular testing results, and laboratory testing accuracy. SCOPE Hospital Study Group. Diagn Microbiol Infect Dis 29, 95–102.[CrossRef]
    [Google Scholar]
  18. Leonhardt, A., Renvert, S. & Dahlen, G. ( 1999; ). Microbial findings at failing implants. Clin Oral Implants Res 10, 339–345.[CrossRef]
    [Google Scholar]
  19. Lewis, K. ( 2001; ). Riddle of biofilm resistance. Antimicrob Agents Chemother 45, 999–1007.[CrossRef]
    [Google Scholar]
  20. Morrison, D. C. & Ryan, J. L. ( 1987; ). Endotoxins and disease mechanisms. Annu Rev Med 38, 417–432.[CrossRef]
    [Google Scholar]
  21. Nair, R. G. & Samaranayake, L. P. ( 1996a; ). The effect of oral commensal bacteria on candidal adhesion to denture acrylic surfaces. An in vitro study. APMIS 104, 339–349.[CrossRef]
    [Google Scholar]
  22. Nair, R. G. & Samaranayake, L. P. ( 1996b; ). The effect of oral commensal bacteria on candidal adhesion to human buccal epithelial cells in vitro. J Med Microbiol 45, 179–185.[CrossRef]
    [Google Scholar]
  23. Nobile, C. J. & Mitchell, A. P. ( 2007; ). Microbial biofilms: e pluribus unum. Curr Biol 17, R349–R353.[CrossRef]
    [Google Scholar]
  24. Odds, F. C. ( 1987; ). Candida infections: an overview. Crit Rev Microbiol 15, 1–5.[CrossRef]
    [Google Scholar]
  25. Palma, C., Cassone, A., Serbousek, D., Pearson, C. A. & Djeu, J. Y. ( 1992; ). Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans. Infect Immun 60, 4604–4611.
    [Google Scholar]
  26. Penk, A. & Pittrow, L. ( 1999; ). Role of fluconazole in the long-term suppressive therapy of fungal infections in patients with artificial implants. Mycoses 42 (Suppl. 2), 91–96.
    [Google Scholar]
  27. Pfaller, M. A., Jones, R. N., Messer, S. A., Edmond, M. B. & Wenzel, R. P. ( 1998; ). National surveillance of nosocomial blood stream infection due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis 31, 327–332.[CrossRef]
    [Google Scholar]
  28. Potera, C. ( 1999; ). Forging a link between biofilms and disease. Science 283, 1837–1839.[CrossRef]
    [Google Scholar]
  29. Ramage, G., Vandewalle, K., Wickes, B. L. & López-Ribot, J. L. ( 2001; ). Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18, 163–170.
    [Google Scholar]
  30. Reid, G., Denstedt, J. D., Kang, Y. S., Lam, D. & Nause, C. ( 1992; ). Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. J Urol 148, 1592–1594.
    [Google Scholar]
  31. Rietschel, E. T., Schade, U., Jensen, M., Wollenweber, H. W., Luderitz, O. & Greisman, S. G. ( 1982; ). Bacterial endotoxins: chemical structure, biological activity and role in septicaemia. Scand J Infect Dis Suppl 31, 8–21.
    [Google Scholar]
  32. Samaranayake, L. P. ( 2006; ). Essential Microbiology for Dentistry, 3rd edn. Edinburgh: Churchill Livingstone.
  33. Samaranayake, L. P. & MacFarlane, T. W. ( 1990; ). Oral Candidosis. London: Wright.
  34. Samaranayake, L. P., MacFarlane, T. W. & Williamson, M. I. ( 1987; ). Comparison of Sabouraud dextrose and Pagano–Levin agar media for detection and isolation of yeasts from oral samples. J Clin Microbiol 25, 162–164.
    [Google Scholar]
  35. Samaranayake, L. P., Lamb, A. B., Lamey, P. J. & MacFarlane, T. W. ( 1989; ). Oral carriage of Candida species and coliforms in patients with burning mouth syndrome. J Oral Pathol Med 18, 233–235.[CrossRef]
    [Google Scholar]
  36. Sedgley, C. M. & Samaranayake, L. P. ( 1994; ). The oral prevalence of aerobic and facultatively anaerobic Gram-negative rods and yeasts in Hong Kong Chinese. Arch Oral Biol 39, 459–466.[CrossRef]
    [Google Scholar]
  37. Sen, B. H., Safavi, K. E. & Spangberg, L. S. ( 1997; ). Colonization of Candida albicans on cleaned human dental hard tissues. Arch Oral Biol 42, 513–520.[CrossRef]
    [Google Scholar]
  38. Thein, Z. M., Samaranayake, Y. H. & Samaranayake, L. P. ( 2006; ). Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch Oral Biol 51, 672–680.[CrossRef]
    [Google Scholar]
  39. Webb, B. C., Thomas, C. J., Willcox, M. D., Harty, D. W. & Knox, K. W. ( 1998; ). Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species. Aust Dent J 43, 160–166.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.012989-0
Loading
/content/journal/jmm/10.1099/jmm.0.012989-0
Loading

Data & Media loading...

vol. , part 12, pp. 1623-1631

c.f.u. counts of species and from biofilms at different time intervals. [PDF](17 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error