1887

Abstract

VopF, a type III effector protein, has been identified as a contributory factor to the intestinal colonization of type III secretion system-positive, non-O1, non-O139 strains. To gain more insight into the function of VopF, a yeast model was developed. Using this model, it was found that ectopic expression of VopF conferred toxicity in yeast.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.012336-0
2010-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/1/17.html?itemId=/content/journal/jmm/10.1099/jmm.0.012336-0&mimeType=html&fmt=ahah

References

  1. Arnoldo, A., Curak, J., Kittanakom, S., Chevelev, I., Lee, V. T., Sahebol-Amri, M., Koscik, B., Ljuma, L., Roy, P. J. & other authors ( 2008; ). Identification of small molecule inhibitors of Pseudomonas aeruginosa Exoenzyme S using a yeast phenotypic screen. PLoS Genet 4, e1000005 [CrossRef]
    [Google Scholar]
  2. Chen, Y., Johnson, J. A., Pusch, G. D., Morris, J. G., Jr & Stine, O. C. ( 2007; ). The genome of non-O1 Vibrio cholerae NRT 36S demonstrates the presence of pathogenic mechanisms that are distinct from O1 Vibrio cholerae. Infect Immun 75, 2645–2647.[CrossRef]
    [Google Scholar]
  3. Dean, P., Maresca, M. & Kenny, B. ( 2005; ). EPEC's weapons of mass subversion. Curr Opin Microbiol 8, 28–34.[CrossRef]
    [Google Scholar]
  4. Dziejman, M., Serruto, D., Tam, V. C., Sturtevant, D., Diraphat, P., Faruque, S. M., Rahman, H. M., Heidelberg, J. F., Decker, J. & other authors ( 2005; ). Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci U S A 102, 3465–3470.[CrossRef]
    [Google Scholar]
  5. Hassane, D. C., Lee, R. B., Mendenhall, M. D. & Pickett, C. L. ( 2001; ). Cytolethal distending toxin demonstrates genotoxic activity in a yeast model. Infect Immun 69, 5752–5759.[CrossRef]
    [Google Scholar]
  6. Hayward, R. D. & Koronakis, V. ( 2002; ). Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol 12, 15–20.[CrossRef]
    [Google Scholar]
  7. Huang, J., Lesser, C. F. & Lory, S. ( 2008; ). The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 456, 112–115.[CrossRef]
    [Google Scholar]
  8. Jewett, T. J., Fischer, E. R., Mead, D. J. & Hackstadt, T. ( 2006; ). Chlamydia TARP is a bacterial nucleator of actin. Proc Natl Acad Sci U S A 103, 15599–15604.[CrossRef]
    [Google Scholar]
  9. Joelsson, A., Liu, Z. & Zhu, J. ( 2006; ). Genetic and phenotypic diversity of quorum sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect Immun 74, 1141–1147.[CrossRef]
    [Google Scholar]
  10. Lesser, C. F. & Miller, S. I. ( 2001; ). Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. EMBO J 20, 1840–1849.[CrossRef]
    [Google Scholar]
  11. Liverman, A. D. B., Cheng, H.-C., Trosky, J. E., Leung, D. W., Yarbrough, M. L., Burdette, D. L., Rosen, M. K. & Orth, K. ( 2007; ). Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci U S A 104, 17117–17122.[CrossRef]
    [Google Scholar]
  12. McMillan, J. N., Sia, R. A. L. & Lew, D. J. ( 1998; ). A morphogenesis checkpoint monitors the actin cytoskeleton in yeast. J Cell Biol 142, 1487–1499.[CrossRef]
    [Google Scholar]
  13. Nejedlik, L., Pierfelice, T. & Geiser, J. R. ( 2004; ). Actin distribution is disrupted upon expression of Yersinia YopO/YpkA in yeast. Yeast 21, 759–768.[CrossRef]
    [Google Scholar]
  14. Quinlan, M. E., Heuser, J. A., Kerkhoff, E. & Mullins, R. D. ( 2005; ). Drosophila Spire is an actin nucleation factor. Nature 433, 382–388.[CrossRef]
    [Google Scholar]
  15. Rabin, S. D. & Hauser, A. R. ( 2003; ). Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun 71, 4144–4150.[CrossRef]
    [Google Scholar]
  16. Raychaudhuri, S., Jain, V. & Dongre, M. ( 2006; ). The identification of a constitutively active variant of LuxO that affects the production of HA/protease and biofilm development in a non-O1, non-O139 strain Vibrio cholerae O110. Gene 369, 126–133.[CrossRef]
    [Google Scholar]
  17. Rodríguez-Escudero, I., Hardwidge, P. R., Nombela, C., Cid, V. J., Finlay, B. B. & Molina, M. ( 2005; ). Enteropathogenic Escherichia coli type III effectors alter cytoskeletal function and signaling in Saccharomyces cerevisiae. Microbiology 151, 2933–2945.[CrossRef]
    [Google Scholar]
  18. Rodríguez-Pachón, J. M., Martín, H., North, G., Rotger, R., Nombela, C. & Molina, M. ( 2002; ). A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators. J Biol Chem 277, 27094–27102.[CrossRef]
    [Google Scholar]
  19. Sato, H., Frank, D. W., Hillard, C. J., Feix, J. B., Pankhaniya, R. R., Moriyama, K., Finck-Barbancon, V., Buchaklian, A., Lei, M. & other authors ( 2003; ). The mechanism of action of the Pseudomonas aeruginosa encoded type III cytotoxin, ExoU. EMBO J 22, 2959–2969.[CrossRef]
    [Google Scholar]
  20. Shohdy, N., Efe, J. A., Emr, S. D. & Shuman, H. A. ( 2005; ). Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A 102, 4866–4871.[CrossRef]
    [Google Scholar]
  21. Sturgill, T. W., Cohen, A., Diefenbacher, M., Trautwein, M., Martin, D. E. & Hall, M. N. ( 2008; ). Tor1 and Tor2 have distinct locations in live cells. Eukaryot Cell 7, 1819–1830.[CrossRef]
    [Google Scholar]
  22. Tam, V. C., Serruto, D., Dziejman, M., Brieher, W. & Mekalanos, J. J. ( 2007; ). A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 1, 95–107.[CrossRef]
    [Google Scholar]
  23. Tran Van Nhieu, G., Caron, E., Hall, A. & Sansonetti, P. J. ( 1999; ). IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18, 3249–3262.[CrossRef]
    [Google Scholar]
  24. Trosky, J. E., Mukherjee, S., Burdette, D. L., Roberts, M., McCarter, L., Siegel, R. M. & Orth, K. ( 2004; ). Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279, 51953–51957.[CrossRef]
    [Google Scholar]
  25. Valdivia, R. H. ( 2004; ). Modeling the function of bacterial virulence factors in Saccharomyces cerevisiae. Eukaryot Cell 3, 827–834.[CrossRef]
    [Google Scholar]
  26. Von Pawel-Rammingen, U., Telepnev, M. V., Schmidt, G., Aktories, K., Wolf-Watz, H. & Rosqvist, R. ( 2000; ). GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36, 737–748.
    [Google Scholar]
  27. Yoon, S., Liu, Z., Eyobo, Y. & Orth, K. ( 2003; ). Yersinia effector YopJ inhibits yeast MAPK signaling pathways by an evolutionarily conserved mechanism. J Biol Chem 278, 2131–2135.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.012336-0
Loading
/content/journal/jmm/10.1099/jmm.0.012336-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error