1887

Abstract

Recently, we showed that herpes simplex virus 1 (HSV-1)-infected monocytes have altered antifungal defences, in particular they show augmented phagocytosis of followed by a failure of the intracellular killing of the ingested fungi. On the basis of these functional data, comparative studies were carried out on the gene expression profile of cells infected with HSV-1 and/or in order to investigate the molecular mechanisms underlying such virus-induced dysfunction. Affymetrix GeneChip technology was used to evaluate the cell transcription pattern, focusing on genes involved in phagocytosis, fungal adhesion, antimicrobial activity and apoptosis. The results indicated there was: (a) prevalent inhibition of opsonin-mediated phagocytosis, (b) upregulation of several pathways of antibody- and complement-independent phagocytosis, (c) inhibition of macrophage activation, (d) marked dysregulation of oxidative burst, (e) induction of apoptosis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.011023-0
2009-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/10/1283.html?itemId=/content/journal/jmm/10.1099/jmm.0.011023-0&mimeType=html&fmt=ahah

References

  1. Areschoug T., Gordon S. 2008; Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Contrib Microbiol 15:45–60
    [Google Scholar]
  2. Beretti F., Cenacchi V., Portolani M., Ardizzoni A., Blasi E., Cermelli C. 2007; A transmissible cytotoxic activity isolated from a patient with brain ischemia causes microglial cell activation and dysfunction. Cell Mol Neurobiol 27:517–528 [CrossRef]
    [Google Scholar]
  3. Blasi E., Mucci A., Neglia R., Pezzini F., Colombari B., Radzioch D., Cossarizza A., Lugli E., Volpini G. other authors 2005; Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans . FEMS Immunol Med Microbiol 44:69–79 [CrossRef]
    [Google Scholar]
  4. Cermelli C., Moroni A., Pietrosemoli P., Pecorari M., Portolani M. 1992; IgG antibodies to human herpesvirus-6 (HHV-6) in Italian people. Microbiologica 15:57–63
    [Google Scholar]
  5. Cermelli C., Cenacchi V., Beretti F., Pezzini F., Luca D. D., Blasi E. 2006; Human herpesvirus-6 dysregulates monocyte-mediated anticryptococcal defences. J Med Microbiol 55:695–702 [CrossRef]
    [Google Scholar]
  6. Cermelli C., Orsi C. F., Ardizzoni A., Lugli E., Cenacchi V., Cossarizza A., Blasi E. 2008; Herpes simplex virus type 1 dysregulates anti-fungal defenses preventing monocyte activation and downregulating Toll-like receptor-2. Microbiol Immunol 52:575–584 [CrossRef]
    [Google Scholar]
  7. De Flora A., Zocchi E., Guida L., Franco L., Buzzone S. 2004; Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann N Y Acad Sci 1028:176–191
    [Google Scholar]
  8. Feldmesser M., Kress Y., Novikoff P., Casadevall A. 2000; Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 68:4225–4237 [CrossRef]
    [Google Scholar]
  9. Fonseca E. M., Nuno F. J., Garcia-Alcalde M. L., Menendez M. J. 2003; Infection due to herpes zoster and cryptococcus after initiating high-activity antiretroviral treatment. Enferm Infecc Microbiol Clin 21:217–218 (in Spanish) [CrossRef]
    [Google Scholar]
  10. Gross O., Gewies A., Finger K., Schafer M., Sparwasser T., Peschel C., Forster I., Ruland J. 2006; Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442:651–656 [CrossRef]
    [Google Scholar]
  11. Held K., Thiel S., Loos M., Petry F. 2008; Increased susceptibility of complement factor B/C2 double knockout mice and mannan-binding lectin knockout mice to systemic infection with Candida albicans . Mol Immunol 45:3934–3941 [CrossRef]
    [Google Scholar]
  12. Karino T., Nakamura J., Fujita K., Kobashi Y., Yano T., Okimoto N., Soejima R. 1998; A case with chronic active EB virus infection accompanied with pulmonary candidiasis. Kansenshogaku Zasshi 72:1306–1310 (in Japanese [CrossRef]
    [Google Scholar]
  13. Kim T. R., Yoon J. H., Kim Y. C., Yook Y. H., Kim I. G., Kim Y. S., Lee H., Paik S. G. 2004; LPS-induced CD53 expression: a protection mechanism against oxidative and radiation stress. Mol Cells 17:125–131
    [Google Scholar]
  14. Kobayashi T. K., Ueda M., Nishino T., Moritani S., Higaki T., Bamba M. 2003; Cytologic detection of cryptococcosis coexisting with herpes simplex virus infection in sputum: use of liquid-based, thin-layer preparations. Acta Cytol 47:103–106
    [Google Scholar]
  15. Liu W. M., Mei R., Di X., Ryder T. B., Hubbell E., Dee S., Webster T. A., Harrington C. A., Ho M. H. other authors 2002; Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18:1593–1599 [CrossRef]
    [Google Scholar]
  16. Malavasi F., Deaglio S., Ferrero E., Funaro A., Sancho J., Ausiello C. M., Ortolan E., Vaisitti T., Zubiaur M. other authors 2006; CD38 and CD157 as receptors of the immune system: a bridge between innate and adaptive immunity. Mol Med 12:334–341
    [Google Scholar]
  17. Mansur D. S., Kroon E. G., Nogueira M. L., Arantes R. M., Rodrigues S. C., Akira S., Gazzinelli R. T., Campos M. A. 2005; Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol 166:1419–1426 [CrossRef]
    [Google Scholar]
  18. Marques C. P., Cheeran M. C., Palmquist J. M., Hu S., Urban S. L., Lokensgard J. R. 2008; Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol 181:6417–6426 [CrossRef]
    [Google Scholar]
  19. Marti Cabané J., Alvarez Rubio M. 2004; Herpes simplex esophagitis associated to Candida albicans in an immunocompetent host. An Med Interna 21:312 (in Spanish)
    [Google Scholar]
  20. Meyer-Wentrup F., Benitez-Ribas D., Tacken P. J., Punt C. J., Figdor C. G., de Vries I. J., Adema G. J. 2008; Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN- α production. Blood 111:4245–4253 [CrossRef]
    [Google Scholar]
  21. Nakayama T., Shirane J., Hieshima K., Shibano M., Watanabe M., Jin Z., Nagakubo D., Saito T., Shimomura Y., Yoshie O. 2006; Novel antiviral activity of chemokines. Virology 350:484–492 [CrossRef]
    [Google Scholar]
  22. Orino K., Lehman L., Tsuji Y., Ayaki H., Torti S. V., Torti F. M. 2001; Ferritin and the response to oxidative stress. Biochem J 357:241–247 [CrossRef]
    [Google Scholar]
  23. Poon A. P., Gu H., Roizman B. 2006; ICP0 and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc Natl Acad Sci U S A 103:9993–9998 [CrossRef]
    [Google Scholar]
  24. Rogers J., Rohal S., Carrigan D. R., Kusne S., Knox K. K., Gayowski T., Wagener M. M., Fung J. J., Singh N. 2000; Human herpesvirus-6 in liver transplant recipients: role in pathogenesis of fungal infections, neurologic complications, and outcome. Transplantation 69:2566–2573 [CrossRef]
    [Google Scholar]
  25. Smiley J. R. 2004; Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase?. J Virol 78:1063–1068 [CrossRef]
    [Google Scholar]
  26. Tang Y. Q., Yeaman M. R., Selsted M. E. 2002; Antimicrobial peptides from human platelets. Infect Immun 70:6524–6533 [CrossRef]
    [Google Scholar]
  27. Vachon E., Martin R., Plumb J., Kwok V., Vandivier R. W., Glogauer M., Kapus A., Wang X., Chow C. W. & other authors; 2006; CD44 is a phagocytic receptor. Blood 107:4149–4158 [CrossRef]
    [Google Scholar]
  28. Vuorinen T., Kotilainen P., Lautenschlager I., Kujari H., Krogerus L., Oksi J. 2004; Interstitial pneumonitis and coinfection of human herpesvirus 6 and Pneumocystis carinii in a patient with hypogammaglobulinemia. J Clin Microbiol 42:5415–5418 [CrossRef]
    [Google Scholar]
  29. Wakimoto H., Johnson P. R., Knipe D. M., Chiocca E. A. 2003; Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther 10:983–990 [CrossRef]
    [Google Scholar]
  30. Weinberg A., Bloch K. C., Li S., Tang Y. W., Palmer M., Tyler K. L. 2005; Dual infections of the central nervous system with Epstein-Barr virus. J Infect Dis 191:234–237 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.011023-0
Loading
/content/journal/jmm/10.1099/jmm.0.011023-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error