1887

Abstract

To study comprehensive toxin profiles and the chromosomal diversity of current Japanese hospital-associated meticillin-resistant (HA-MRSA) strains, we conducted PCR-based identification of 28 toxin genes, and staphylococcal cassette chromosome (SCC) typing and PFGE analysis of 208 MRSA strains isolated from 100 hospitals throughout Japan. Of the tested HA-MRSA strains, 80.3 % were -positive. The most frequent toxin gene profile was characterized by the carriage of 13 genes, , , , , , , , , , , , and . Ninety of the 208 strains had this profile, which was named pattern A. Among the 118 non-pattern A strains, 100 had similar toxin gene profiles, the concordance rates to pattern A of which were more than 80 %. Consequently, 91.3 % of the examined HA-MRSA strains carried similar toxin profiles, although PFGE patterns showed a wide variation. These strains belonged to SCC type II, II and coagulase type II. We concluded that, unlike MRSA from many other countries, most of the Japanese HA-MRSA strains belonged to, or were related to, a specific group carrying the set of 13 toxin genes, irrespective of chromosomal diversity. In addition, among the 13 toxin genes, the coexistence rates of , and , and those of , , , and , were higher than for the other toxin genes. High coexistence rates of , and genes suggested the presence of the pathogenicity island SaPIn1 in these strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.010173-0
2009-10-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/10/1329.html?itemId=/content/journal/jmm/10.1099/jmm.0.010173-0&mimeType=html&fmt=ahah

References

  1. Bignardi, G. E., Woodford, N., Chapman, A., Johnson, A. P. & Speller, D. C. ( 1996; ). Detection of the mec-A gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillin resistance. J Antimicrob Chemother 37, 53–63.
    [Google Scholar]
  2. Diekema, D. J., Pfaller, M. A., Schmitz, F. J., Smayevsky, J., Bell, J., Jones, R. N., Beach, M. & SENTRY Participants Group ( 2001; ). Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32, S114–S132.[CrossRef]
    [Google Scholar]
  3. Diep, B. A., Carleton, H. A., Chang, R. F., Sensabaugh, G. F. & Perdreau-Remington, F. ( 2006; ). Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J Infect Dis 193, 1495–1503.[CrossRef]
    [Google Scholar]
  4. Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H. & Spratt, B. G. ( 2002; ). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99, 7687–7692.[CrossRef]
    [Google Scholar]
  5. Ferry, T., Thomas, D., Genestier, A. L., Bes, M., Lina, G., Vandenesch, F. & Etienne, J. ( 2005; ). Comparative prevalence of superantigen genes in Staphylococcus aureus isolates causing sepsis with and without septic shock. Clin Infect Dis 41, 771–777.[CrossRef]
    [Google Scholar]
  6. Gilot, P., Lina, G., Cochard, T. & Poutrel, B. ( 2002; ). Analysis of the genetic variability of genes encoding the RNA III-activating components Agric and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol 40, 4060–4067.[CrossRef]
    [Google Scholar]
  7. Hu, D. L., Omoe, K., Inoue, F., Kasai, T., Yasujima, M., Shinagawa, K. & Nakane, A. ( 2008; ). Comparative prevalence of superantigenic toxin genes in meticillin-resistant and meticillin-susceptible Staphylococcus aureus isolates. J Med Microbiol 57, 1106–1112.[CrossRef]
    [Google Scholar]
  8. Ito, T., Katayama, Y., Asada, K., Mori, N., Tsutsumimoto, K., Tiensasitorn, C. & Hiramatsu, K. ( 2001; ). Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45, 1323–1336.[CrossRef]
    [Google Scholar]
  9. Jarraud, S., Peyrat, M. A., Lim, A., Tristan, A., Bes, M., Mougel, C., Etienne, J., Vandenesch, F., Bonneville, M. & Lina, G. ( 2001; ). egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166, 669–677.[CrossRef]
    [Google Scholar]
  10. Jarraud, S., Mougel, C., Thioulouse, J., Lina, G., Meugnier, H., Forey, F., Nesme, X., Etienne, J. & Vandenesch, F. ( 2002; ). Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70, 631–641.[CrossRef]
    [Google Scholar]
  11. Kaneko, J., Muramoto, K. & Kamio, Y. ( 1997; ). Gene of LukF-PV-like component of Panton-Valentine leukocidin in Staphylococcus aureus P83 is linked with lukM. Biosci Biotechnol Biochem 61, 541–544.[CrossRef]
    [Google Scholar]
  12. Kimura, A., Igarashi, H., Ushioda, H., Okuzumi, K., Kobayashi, H. & Otsuka, T. ( 1992; ). Epidemiological study of Staphylococcus aureus isolated from the Japanese national university and medical college hospitals with coagulase typing, and production of enterotoxins and toxic shock syndrome toxin-1. Kansenshogaku Zasshi 66, 1543–1549.[CrossRef]
    [Google Scholar]
  13. Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K. & other authors ( 2001; ). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.[CrossRef]
    [Google Scholar]
  14. Lina, G., Piémont, Y., Godail-Gamot, F., Bes, M., Peter, M. O., Gauduchon, V., Vandenesch, F. & Etienne, J. ( 1999; ). Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29, 1128–1132.[CrossRef]
    [Google Scholar]
  15. Louie, L., Matsumura, S. O., Choi, E., Louie, M. & Simor, A. E. ( 2000; ). Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J Clin Microbiol 38, 2170–2173.
    [Google Scholar]
  16. McDougal, L. K., Steward, C. D., Killgore, G. E., Chaitram, J. M., McAllister, S. K. & Tenover, F. C. ( 2003; ). Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41, 5113–5120.[CrossRef]
    [Google Scholar]
  17. Nakano, M., Kawano, Y., Kawagishi, M., Hasegawa, T., Iinuma, Y. & Ohta, M. ( 2002a; ). Two-dimensional analysis of exoproteins of methicillin-resistant Staphylococcus aureus (MRSA) for possible epidemiological applications. Microbiol Immunol 46, 11–22.[CrossRef]
    [Google Scholar]
  18. Nakano, M., Miyazawa, H., Kawano, Y., Kawagishi, M., Torii, K., Hasegawa, T., Iinuma, Y. & Ohta, M. ( 2002b; ). An outbreak of neonatal toxic shock syndrome-like exanthematous disease (NTED) caused by methicillin-resistant Staphylococcus aureus (MRSA) in a neonatal intensive care unit. Microbiol Immunol 46, 277–284.[CrossRef]
    [Google Scholar]
  19. Nishi, J., Yoshinaga, M., Miyanohara, H., Kawahara, M., Kawabata, M., Motoya, T., Owaki, T., Oiso, S., Kawakami, M. & other authors ( 2002; ). An epidemiological survey of methicillin-resistant Staphylococcus aureus by combined use of mec-HVR genotyping and toxin genotyping in a university hospital in Japan. Infect Control Hosp Epidemiol 23, 506–510.[CrossRef]
    [Google Scholar]
  20. Novick, R. P. ( 2003; ). Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49, 93–105.[CrossRef]
    [Google Scholar]
  21. Oliveira, D. C., Tomasz, A. & De Lencastre, H. ( 2002; ). Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis 2, 180–189.[CrossRef]
    [Google Scholar]
  22. Omoe, K., Ishikawa, M., Shimoda, Y., Hu, D. L., Ueda, S. & Shinagawa, K. ( 2002; ). Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. J Clin Microbiol 40, 857–862.[CrossRef]
    [Google Scholar]
  23. Piao, C., Karasawa, T., Totsuka, K., Uchiyama, T. & Kikuchi, K. ( 2005; ). Prospective surveillance of community-onset and healthcare-associated methicillin-resistant Staphylococcus aureus isolated from a university-affiliated hospital in Japan. Microbiol Immunol 49, 959–970.[CrossRef]
    [Google Scholar]
  24. Sergeev, N., Volokhov, D., Chizhikov, V. & Rasooly, A. ( 2004; ). Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay. J Clin Microbiol 42, 2134–2143.[CrossRef]
    [Google Scholar]
  25. Takahashi, N. ( 2003; ). Neonatal toxic shock syndrome-like exanthematous disease (NTED). Pediatr Int 45, 233–237.[CrossRef]
    [Google Scholar]
  26. Takahashi, N., Nishida, H., Kato, H., Imanishi, K., Sakata, Y. & Uchiyama, T. ( 1998; ). Exanthematous disease induced by toxic shock syndrome toxin 1 in the early neonatal period. Lancet 351, 1614–1619.[CrossRef]
    [Google Scholar]
  27. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  28. Watanabe, H., Masaki, H., Asoh, N., Watanabe, K., Oishi, K., Kobayashi, S., Sato, A. & Nagatake, T. ( 2001; ). Enterocolitis caused by methicillin-resistant Staphylococcus aureus: molecular characterization of respiratory and digestive tract isolates. Microbiol Immunol 45, 629–634.[CrossRef]
    [Google Scholar]
  29. Zaraket, H., Otsuka, T., Saito, K., Dohmae, S., Takano, T., Higuchi, W., Ohkubo, T., Ozaki, K., Takano, M. & other authors ( 2007; ). Molecular characterization of methicillin-resistant Staphylococcus aureus in hospitals in Niigata, Japan: divergence and transmission. Microbiol Immunol 51, 171–176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.010173-0
Loading
/content/journal/jmm/10.1099/jmm.0.010173-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error