1887

Abstract

Human infection by the gastric pathogen is characterized by a robust immune response which rarely prevents persistent colonization. Emerging evidence suggests that lactobacilli may reduce infection rates and associated inflammation. In this study, we measured the ability of two model strains of (UCC118 and UCC119) to modulate gastric epithelial cell chemokine responses to infection. Pre-treatment of AGS cells with either strain significantly decreased interleukin-8 (IL-8) production upon exposure to , but not in cells stimulated with TNF-. The production of the chemokines CCL20 and IP-10 by AGS cells infected with was also altered following pre-treatment with UCC118 and UCC119. We showed that a greater reduction in IL-8 production with UCC119 was due to the production of more acid by this strain. Furthermore, UV-killed cells of both lactobacillus strains were still able to reduce -induced IL-8 in the absence of acid production, indicating the action of a second anti-inflammatory mechanism. This immunomodulatory activity was not dependent on adhesion to epithelial cells or bacteriocin production. Real-time RT-PCR analysis showed that expression of eight of twelve Cag pathogenicity island genes tested was downregulated by exposure to , but not by cells of four other lactobacillus species. CagA accumulated in cells following exposure to presumably as a result of loss of functionality of the Cag secretion system. These data identified a new mechanism whereby some probiotic bacteria have a positive effect on -associated inflammation without clearing the infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.009407-0
2009-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/8/996.html?itemId=/content/journal/jmm/10.1099/jmm.0.009407-0&mimeType=html&fmt=ahah

References

  1. Aihara, M., Tsuchimoto, D., Takizawa, H., Azuma, A., Wakebe, H., Ohmoto, Y., Imagawa, K., Kikuchi, M., Mukaida, N. & Matsushima, K. ( 1997; ). Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun 65, 3218–3224.
    [Google Scholar]
  2. Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A., Francois, F., Perez-Perez, G., Blaser, M. J. & Relman, D. A. ( 2006; ). Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 103, 732–737.[CrossRef]
    [Google Scholar]
  3. Bourzac, K. M., Botham, C. M. & Guillemin, K. ( 2007; ). Helicobacter pylori CagA induces AGS cell elongation through a cell retraction defect that is independent of Cdc42, Rac1, and Arp2/3. Infect Immun 75, 1203–1213.[CrossRef]
    [Google Scholar]
  4. Brandt, S., Kwok, T., Hartig, R., Konig, W. & Backert, S. ( 2005; ). NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A 102, 9300–9305.[CrossRef]
    [Google Scholar]
  5. Buck, B. L., Altermann, E., Svingerud, T. & Klaenhammer, T. R. ( 2005; ). Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71, 8344–8351.[CrossRef]
    [Google Scholar]
  6. Casey, P. G., Gardiner, G. E., Casey, G., Bradshaw, B., Lawlor, P. G., Lynch, P. B., Leonard, F. C., Stanton, C., Ross, R. P. & other authors ( 2007; ). A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 73, 1858–1863.[CrossRef]
    [Google Scholar]
  7. Choi, I. J., Fujimoto, S., Yamauchi, K., Graham, D. Y. & Yamaoka, Y. ( 2007; ). Helicobacter pylori environmental interactions: effect of acidic conditions on H. pylori-induced gastric mucosal interleukin-8 production. Cell Microbiol 9, 2457–2469.[CrossRef]
    [Google Scholar]
  8. Claesson, M. J., Li, Y., Leahy, S., Canchaya, C., van Pijkeren, J. P., Cerdeño-Tárraga, A. M., Parkhill, J., Flynn, S., O'Sullivan, G. C. & other authors ( 2006; ). Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103, 6718–6723.[CrossRef]
    [Google Scholar]
  9. Corr, S. C., Li, Y., Riedel, C. U., O'Toole, P. W., Hill, C. & Gahan, C. G. ( 2007; ). Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104, 7617–7621.[CrossRef]
    [Google Scholar]
  10. Corsetti, A., Settanni, L. & Van Sinderen, D. ( 2004; ). Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96, 521–534.[CrossRef]
    [Google Scholar]
  11. De Vries, A. C., Van Driel, H. F., Richardus, J. H., Ouwendijk, M., Van Vuuren, A. J., De Man, R. A. & Kuipers, E. J. ( 2008; ). Migrant communities constitute a possible target population for primary prevention of Helicobacter pylori-related complications in low incidence countries. Scand J Gastroenterol 43, 403–409.
    [Google Scholar]
  12. Dufour, J. H., Dziejman, M., Liu, M. T., Leung, J. H., Lane, T. E. & Luster, A. D. ( 2002; ). IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168, 3195–3204.[CrossRef]
    [Google Scholar]
  13. Dunne, C., O'Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O'Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G. & other authors ( 2001; ). In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73, 386S–392S.
    [Google Scholar]
  14. Fischer, W., Puls, J., Buhrdorf, R., Gebert, B., Odenbreit, S. & Haas, R. ( 2001; ). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42, 1337–1348.
    [Google Scholar]
  15. Franceschi, F., Cazzato, A., Nista, E. C., Scarpellini, E., Roccarina, D., Gigante, G., Gasbarrini, G. & Gasbarrini, A. ( 2007; ). Role of probiotics in patients with Helicobacter pylori infection. Helicobacter 12 (Suppl. 2), 59–63.[CrossRef]
    [Google Scholar]
  16. Gillen, D. & McColl, K. E. ( 2005; ). Gastroduodenal disease, Helicobacter pylori, and genetic polymorphisms. Clin Gastroenterol Hepatol 3, 1180–1186.[CrossRef]
    [Google Scholar]
  17. Graham, D. Y. & Shiotani, A. ( 2008; ). New concepts of resistance in the treatment of Helicobacter pylori infections. Nat Clin Pract Gastroenterol Hepatol 5, 321–331.[CrossRef]
    [Google Scholar]
  18. Guarner, F. & Schaafsma, G. J. ( 1998; ). Probiotics. Int J Food Microbiol 39, 237–238.[CrossRef]
    [Google Scholar]
  19. Higashi, H., Tsutsumi, R., Fujita, A., Yamazaki, S., Asaka, M., Azuma, T. & Hatakeyama, M. ( 2002; ). Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A 99, 14428–14433.[CrossRef]
    [Google Scholar]
  20. Jelcic, I., Hufner, E., Schmidt, H. & Hertel, C. ( 2008; ). Repression of the LEE-encoded regulator gene transcription of E. coli O157 : H7 by culture supernatants of Lactobacillus reuteri is LuxS and strain dependent. Appl Environ Microbiol 74, 3310–3314.[CrossRef]
    [Google Scholar]
  21. Johnson-Henry, K. C., Mitchell, D. J., Avitzur, Y., Galindo-Mata, E., Jones, N. L. & Sherman, P. M. ( 2004; ). Probiotics reduce bacterial colonization and gastric inflammation in Helicobacter pylori-infected mice. Dig Dis Sci 49, 1095–1102.[CrossRef]
    [Google Scholar]
  22. Lesbros-Pantoflickova, D., Corthesy-Theulaz, I. & Blum, A. L. ( 2007; ). Helicobacter pylori and probiotics. J Nutr 137, 812S–818S.
    [Google Scholar]
  23. Magalhaes Queiroz, D. M. & Luzza, F. ( 2006; ). Epidemiology of Helicobacter pylori infection. Helicobacter 11 (Suppl. 1), 1–5.
    [Google Scholar]
  24. Medellin-Pena, M. J., Wang, H., Johnson, R., Anand, S. & Griffiths, M. W. ( 2007; ). Probiotics affect virulence-related gene expression in Escherichia coli O157 : H7. Appl Environ Microbiol 73, 4259–4267.[CrossRef]
    [Google Scholar]
  25. Moese, S., Selbach, M., Zimny-Arndt, U., Jungblut, P. R., Meyer, T. F. & Backert, S. ( 2001; ). Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of the Helicobacter pylori CagA protein in phagocytic cells: processing or breakage? Proteomics 1, 618–629.[CrossRef]
    [Google Scholar]
  26. Neville, L. F., Mathiak, G. & Bagasra, O. ( 1997; ). The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): a novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev 8, 207–219.[CrossRef]
    [Google Scholar]
  27. O'Hara, A. M., O'Regan, P., Fanning, A., O'Mahony, C., Macsharry, J., Lyons, A., Bienenstock, J., O'Mahony, L. & Shanahan, F. ( 2006; ). Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology 118, 202–215.[CrossRef]
    [Google Scholar]
  28. O'Toole, P. W., Janzon, L., Doig, P., Huang, J., Kostrzynska, M. & Trust, T. J. ( 1995; ). The putative neuraminyllactose-binding hemagglutinin HpaA of Helicobacter pylori CCUG 17874 is a lipoprotein. J Bacteriol 177, 6049–6057.
    [Google Scholar]
  29. Pena, J. A., Rogers, A. B., Ge, Z., Ng, V., Li, S. Y., Fox, J. G. & Versalovic, J. ( 2005; ). Probiotic Lactobacillus spp. diminish Helicobacter hepaticus-induced inflammatory bowel disease in interleukin-10-deficient mice. Infect Immun 73, 912–920.[CrossRef]
    [Google Scholar]
  30. Robinson, K., Argent, R. H. & Atherton, J. C. ( 2007; ). The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 21, 237–259.[CrossRef]
    [Google Scholar]
  31. Rokka, S., Myllykangas, S. & Joutsjoki, V. ( 2008; ). Effect of specific colostral antibodies and selected lactobacilli on the adhesion of Helicobacter pylori on AGS cells and the Helicobacter-induced IL-8 production. Scand J Immunol 68, 280–286.[CrossRef]
    [Google Scholar]
  32. Roos, S., Engstrand, L. & Jonsson, H. ( 2005; ). Lactobacillus gastricus sp. nov., Lactobacillus antri sp. nov., Lactobacillus kalixensis sp. nov. and Lactobacillus ultunensis sp. nov., isolated from human stomach mucosa. Int J Syst Evol Microbiol 55, 77–82.[CrossRef]
    [Google Scholar]
  33. Ryan, K. A., van Doorn, L. J., Moran, A. P., Glennon, M., Smith, T. & Maher, M. ( 2001; ). Evaluation of clarithromycin resistance and cagA and vacA genotyping of Helicobacter pylori strains from the west of Ireland using line probe assays. J Clin Microbiol 39, 1978–1980.[CrossRef]
    [Google Scholar]
  34. Ryan, K. A., Daly, P., Li, Y., Hooton, C. & O'Toole, P. W. ( 2008a; ). Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli. J Antimicrob Chemother 61, 831–834.[CrossRef]
    [Google Scholar]
  35. Ryan, K. A., Jayaraman, T., Daly, P., Canchaya, C., Curran, S., Fang, F., Quigley, E. & O'Toole, P. W. ( 2008b; ). Isolation of lactobacilli with probiotic properties from the human stomach. Lett Appl Microbiol 47, 269–274.[CrossRef]
    [Google Scholar]
  36. Schutyser, E., Struyf, S. & Van Damme, J. ( 2003; ). The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14, 409–426.[CrossRef]
    [Google Scholar]
  37. Sgouras, D. N., Panayotopoulou, E. G., Martinez-Gonzalez, B., Petraki, K., Michopoulos, S. & Mentis, A. ( 2005; ). Lactobacillus johnsonii La1 attenuates Helicobacter pylori-associated gastritis and reduces levels of proinflammatory chemokines in C57BL/6 mice. Clin Diagn Lab Immunol 12, 1378–1386.
    [Google Scholar]
  38. Sharma, S. A., Tummuru, M. K., Miller, G. G. & Blaser, M. J. ( 1995; ). Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun 63, 1681–1687.
    [Google Scholar]
  39. Stein, M., Rappuoli, R. & Covacci, A. ( 2000; ). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A 97, 1263–1268.[CrossRef]
    [Google Scholar]
  40. Su, B., Ceponis, P. J. & Sherman, P. M. ( 2003; ). Cytoskeletal rearrangements in gastric epithelial cells in response to Helicobacter pylori infection. J Med Microbiol 52, 861–867.[CrossRef]
    [Google Scholar]
  41. Tamura, A., Kumai, H., Nakamichi, N., Sugiyama, T., Deguchi, R., Takagi, A. & Koga, Y. ( 2006; ). Suppression of Helicobacter pylori-induced interleukin-8 production in vitro and within the gastric mucosa by a live Lactobacillus strain. J Gastroenterol Hepatol 21, 1399–1406.
    [Google Scholar]
  42. Tomimori, K., Uema, E., Teruya, H., Ishikawa, C., Okudaira, T., Senba, M., Yamamoto, K., Matsuyama, T., Kinjo, F. & other authors ( 2007; ). Helicobacter pylori induces CCL20 expression. Infect Immun 75, 5223–5232.[CrossRef]
    [Google Scholar]
  43. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  44. Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N. & Schlemper, R. J. ( 2001; ). Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345, 784–789.[CrossRef]
    [Google Scholar]
  45. Vakil, N. & Megraud, F. ( 2007; ). Eradication therapy for Helicobacter pylori. Gastroenterology 133, 985–1001.[CrossRef]
    [Google Scholar]
  46. van Pijkeren, J. P., Canchaya, C., Ryan, K. A., Li, Y., Claesson, M. J., Sheil, B., Steidler, L., O'Mahony, L., Fitzgerald, G. F. & other authors ( 2006; ). Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72, 4143–4153.[CrossRef]
    [Google Scholar]
  47. Velin, D., Bachmann, D., Bouzourene, H. & Michetti, P. ( 2005; ). Mast cells are critical mediators of vaccine-induced Helicobacter clearance in the mouse model. Gastroenterology 129, 142–155.[CrossRef]
    [Google Scholar]
  48. Viala, J., Chaput, C., Boneca, I. G., Cardona, A., Girardin, S. E., Moran, A. P., Athman, R., Mémet, S., Huerre, M. R. & other authors ( 2004; ). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5, 1166–1174.[CrossRef]
    [Google Scholar]
  49. Weltzin, R., Kleanthous, H., Guirakhoo, F., Monath, T. P. & Lee, C. K. ( 1997; ). Novel intranasal immunization techniques for antibody induction and protection of mice against gastric Helicobacter felis infection. Vaccine 15, 370–376.[CrossRef]
    [Google Scholar]
  50. Wu, Y. Y., Tsai, H. F., Lin, W. C., Hsu, P. I., Shun, C. T., Wu, M. S. & Hsu, P. N. ( 2007; ). Upregulation of CCL20 and recruitment of CCR6+ gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Infect Immun 75, 4357–4363.[CrossRef]
    [Google Scholar]
  51. Zhou, C., Ma, F. Z., Deng, X. J., Yuan, H. & Ma, H. S. ( 2008; ). Lactobacilli inhibit interleukin-8 production induced by Helicobacter pylori lipopolysaccharide-activated Toll-like receptor 4. World J Gastroenterol 14, 5090–5095.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.009407-0
Loading
/content/journal/jmm/10.1099/jmm.0.009407-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error