1887

Abstract

Two isogenic sets of strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6 mutants with deletions in the gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the operon and subsequent complementation . It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.005678-0
2009-01-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/1/26.html?itemId=/content/journal/jmm/10.1099/jmm.0.005678-0&mimeType=html&fmt=ahah

References

  1. Anisimov, A. P. ( 1999; ). Molecular genetic mechanisms of the formation and functional significance of the capsule of Yersinia pestis. ScD thesis, Russian Research Anti-Plague Institute ‘Microbe’, Saratov, Russia.
  2. Anisimov, A. P. ( 2002a; ). Factors of Yersinia pestis providing circulation and persistence of plague pathogen in ecosystems of natural foci. Communication 2. Mol Gen Mikrobiol Virusol 4, 3–11 (in Russian).
    [Google Scholar]
  3. Anisimov, A. P. ( 2002b; ). Yersinia pestis factors, assuring circulation and maintenance of the plague pathogen in natural foci ecosystems. Report 1. Mol Gen Mikrobiol Virusol 3, 3–23 (in Russian).
    [Google Scholar]
  4. Anisimov, A. P., Lindler, L. E. & Pier, G. B. ( 2004; ). Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 17, 434–464.[CrossRef]
    [Google Scholar]
  5. Anisimov, A. P., Panfertsev, E. A., Svetoch, T. E. & Dentovskaya, S. V. ( 2007; ). Variability of the protein sequences of LcrV between epidemic and atypical rhamnose-positive strains of Yersinia pestis. Adv Exp Med Biol 603, 23–27.
    [Google Scholar]
  6. Bakhteeva, I. V., Kravchenko, T. B., Titareva, G. M. & Ivanov, S. A. ( 2007; ). Interaction of Yersinia pestis pH 6 antigen with various types of eukaryotic cells. The Problems of Particularly Dangerous Infections 94, 40–42 (Saratov).
    [Google Scholar]
  7. Ben-Efraim, S., Aronson, M. & Bichowsky-Slomnicki, L. ( 1961; ). New antigenic component of Pasteurella pestis formed under specific conditions of pH and temperature. J Bacteriol 81, 704–714.
    [Google Scholar]
  8. Bengoechea, J.-A., Lindner, B., Seydel, U., Díaz, R. & Moriyón, I. ( 1998; ). Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica. Microbiology 144, 1509–1515.[CrossRef]
    [Google Scholar]
  9. Bichowsky-Slomnicki, L. & Ben-Efraim, S. ( 1963; ). Biological activities in extracts of Pasteurella pestis and their relation to the “pH 6 antigen”. J Bacteriol 86, 101–111.
    [Google Scholar]
  10. Bowdler, A. J. ( 2001; ). The Complete Spleen: Structure, Function, and Clinical Disorders. Totowa, NJ: Humana.
  11. Brubaker, R. R. ( 2006; ). Yersinia pestis and bubonic plague. In The Prokaryotes: a Handbook on the Biology of Bacteria, vol. 6, Proteobacteria: Gamma Subclass, pp. 399–442. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackelbrandt. New York: Springer.
  12. Burrows, T. W. ( 1957; ). Virulence of Pasteurella pestis. Nature 179, 1246–1247.[CrossRef]
    [Google Scholar]
  13. Burrows, T. W. ( 1963; ). Virulence of Pasteurella pestis and immunity to plague. Ergeb Mikrobiol Immunitatsforsch Exp Ther 37, 59–113.
    [Google Scholar]
  14. Cathelyn, J. S., Crosby, S. D., Lathem, W. W., Goldman, W. E. & Miller, V. L. ( 2006; ). RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103, 13514–13519.[CrossRef]
    [Google Scholar]
  15. Chandrika, P., Kumanan, K. & Nachimuthu, K. ( 1998; ). Comparison of three different techniques for the detection of duck plague virus antigen. Indian Vet J 75, 843–844.
    [Google Scholar]
  16. Chauvaux, S., Rosso, M. L., Frangeul, L., Lacroix, C., Labarre, L., Schiavo, A., Marceau, M., Dillies, M. A., Foulon, J. & other authors ( 2007; ). Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. Microbiology 153, 3112–3124.[CrossRef]
    [Google Scholar]
  17. Cherepanov, P. A., Rosqvist, R. & Forsberg, Å ( 1998; ). Regulation of pH 6 antigen expression in Yersinia pestis. Med Microbiol 6 (Suppl. II), S8 (Ned N Voor)
    [Google Scholar]
  18. Conchas, R. F. & Carniel, E. ( 1990; ). A highly efficient electroporation system for transformation of Yersinia. Gene 87, 133–137.[CrossRef]
    [Google Scholar]
  19. Cornelis, G. R. ( 2002; ). Yersinia type III secretion: send in the effectors. J Cell Biol 158, 401–408.[CrossRef]
    [Google Scholar]
  20. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  21. Domaradski, I. V. ( 1987; ). The “side-effects” of plasmids (R-plasmids and virulence). Mol Gen Mikrobiol Virusol 6, 3–9 (in Russian).
    [Google Scholar]
  22. Donnenberg, M. S. & Kaper, J. B. ( 1991; ). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59, 4310–4317.
    [Google Scholar]
  23. Drozdov, I. G., Anisimov, A. P., Samoilova, S. V., Yezhov, I. N., Yeremin, S. A., Karlyshev, A. V., Krasilnikova, V. M. & Kravchenko, V. I. ( 1995; ). Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. J Med Microbiol 42, 264–268.[CrossRef]
    [Google Scholar]
  24. Du, Y., Rosqvist, R. & Forsberg, Å. ( 2002; ). Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 70, 1453–1460.[CrossRef]
    [Google Scholar]
  25. Felek, S., Runco, L. M., Thanassi, D. G. & Krukonis, E. S. ( 2007; ). Characterization of six novel chaperone/usher systems in Yersinia pestis. Adv Exp Med Biol 603, 97–105.
    [Google Scholar]
  26. Finlay, B. B. & Falkow, S. ( 1997; ). Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61, 136–169.
    [Google Scholar]
  27. Finney, D. J. ( 1978; ). Statistical Method in Biological Assay, 3rd edn. London: Hodder Arnold.
  28. Forman, S., Wulff, C. R., Myers-Morales, T., Cowan, C., Perry, R. D. & Straley, S. C. ( 2008; ). yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun 76, 578–587.[CrossRef]
    [Google Scholar]
  29. Friedlander, A. M., Welkos, S. L., Worsham, P. L., Andrews, G. P., Heath, D. G., Anderson, G. W., Jr, Pitt, M. L. M., Estep, J. & Davis, K. ( 1995; ). Relationship between virulence and immunity as revealed in recent studies of the F1 capsule of Yersinia pestis. Clin Infect Dis 21 (Suppl. 2), S178–S181.[CrossRef]
    [Google Scholar]
  30. Gage, K. L. & Kosoy, M. Y. ( 2005; ). Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50, 505–528.[CrossRef]
    [Google Scholar]
  31. Galván, E. M., Chen, H. & Schifferli, D. M. ( 2007; ). The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun 75, 1272–1279.[CrossRef]
    [Google Scholar]
  32. Gremyakova, T. A. ( 2004; ). Structure-functional variability of Yersinia pestis antigens and methodology of construction of anti-plague immunoprophylactic preparations. ScD thesis, G. N. Gabrichevskii Moscow Research Institute of Epidemiology and Microbiology, Moscow, Russia.
  33. Herrero, M., de Lorenzo, V. & Timmis, K. ( 1990; ). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172, 6557–6567.
    [Google Scholar]
  34. Hohn, B. & Collins, J. ( 1980; ). A small cosmid for efficient cloning of large DNA fragments. Gene 11, 291–298.[CrossRef]
    [Google Scholar]
  35. Huang, X.-Z. & Lindler, L. E. ( 2004; ). The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun 72, 7212–7219.[CrossRef]
    [Google Scholar]
  36. Hultgren, S. J., Abraham, S., Caparon, M., Falk, P., St Geme, J. W., 3rd & Normark, S. ( 1993; ). Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73, 887–901.[CrossRef]
    [Google Scholar]
  37. Iriarte, M. & Cornelis, G. R. ( 1995; ). MyfF, an element of the network regulating the synthesis of fibrillae in Yersinia enterocolitica. J Bacteriol 177, 738–744.
    [Google Scholar]
  38. Isberg, R. R. ( 1989a; ). Determinants for thermoinducible cell binding and plasmid-encoded cellular penetration detected in the absence of the Yersinia pseudotuberculosis invasin protein. Infect Immun 57, 1998–2005.
    [Google Scholar]
  39. Isberg, R. R. ( 1989b; ). Mammalian cell adhesion functions and cellular penetration of enteropathogenic Yersinia species. Mol Microbiol 3, 1449–1453.[CrossRef]
    [Google Scholar]
  40. Jarrett, C. O., Sebbane, F., Adamovicz, J. J., Andrews, G. P. & Hinnebusch, B. J. ( 2004; ). Flea-borne transmission model to evaluate vaccine efficacy against naturally acquired bubonic plague. Infect Immun 72, 2052–2056.[CrossRef]
    [Google Scholar]
  41. Karlyshev, A., Galyov, E., Smirnov, O., Abramov, V. & Zav'yalov, V. P. ( 1994; ). Structure and regulation of a gene cluster involved in capsule formation of Yersinia pestis, pp. 321–330. In Biological membranes: structure, biogenesis and dynamics (NATO ASI), Series H: Cell Biology, 82. Edited by J. A. F. op den Kamp. Berlin: Springer.
  42. Knirel, Y. A., Lindner, B., Vinogradov, E. V., Kocharova, N. A., Senchenkova, S. N., Shaikhutdinova, R. Z., Dentovskaya, S. V., Fursova, N. K., Bakhteeva, I. V. & other authors ( 2005; ). Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 44, 1731–1743.[CrossRef]
    [Google Scholar]
  43. Knirel, Y. A., Dentovskaya, S. V., Bystrova, O. V., Kocharova, N. A., Senchenkova, S. N., Shaikhutdinova, R. Z., Titareva, G. M., Bakhteeva, I. V., Lindner, B. & other authors ( 2007; ). Relationship of the lipopolysaccharide structure of Yersinia pestis to resistance to antimicrobial factors. Adv Exp Med Biol 603, 88–96.
    [Google Scholar]
  44. Kovalev, O. A. ( 1978; ). Reaction types of regional redistribution of blood. Cor Vasa 20, 230–239.
    [Google Scholar]
  45. Li, B., Zhou, D., Wang, Z., Song, Z., Wang, H., Li, M., Dong, X., Wu, M., Guo, Z. & Yang, R. ( 2007; ). Antibody profiling in plague patients by protein microarray. Microbes Infect 10, 45–51.
    [Google Scholar]
  46. Lindler, L. E. & Tall, B. D. ( 1993; ). Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8, 311–324.[CrossRef]
    [Google Scholar]
  47. Lindler, L. E., Klempner, M. S. & Straley, S. C. ( 1990; ). Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization. Infect Immun 58, 2569–2577.
    [Google Scholar]
  48. Liu, F., Chen, H., Galvan, E. M., Lasaro, M. A. & Schifferli, D. M. ( 2006; ). Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells. Infect Immun 74, 5636–5644.[CrossRef]
    [Google Scholar]
  49. Liu, H., Wang, H., Qiu, J., Wang, X., Guo, Z., Qiu, Y., Zhou, D., Han, Y., Du, Z. & other authors ( 2008; ). Transcriptional profiling of a mice plague model: insights into interaction between Yersinia pestis and its host. J Basic Microbiol (in press). doi:10.1002/jobm.200800027
    [Google Scholar]
  50. Lorange, E. A., Race, B. L., Sebbane, F. & Hinnebusch, B. J. ( 2005; ). Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191, 1907–1912.[CrossRef]
    [Google Scholar]
  51. Makoveichuk, E., Cherepanov, P., Lundberg, S., Forsberg, Å. & Olivecrona, G. ( 2003; ). pH 6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res 44, 320–330.[CrossRef]
    [Google Scholar]
  52. Marra, A. ( 2004; ). Can virulence factors be viable antibacterial targets? Expert Rev Anti Infect Ther 2, 61–72.[CrossRef]
    [Google Scholar]
  53. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor: Cold Spring Harbor Laboratory.
  54. Ngo, T. T. & Leshoff, H. M. ( 1985; ). Enzyme-Mediated Immunoassay. New York: Plenum.
  55. Öuchterlony, O. ( 1949; ). Antigen-antibody reaction in gels. Acta Pathol Microbiol Scand 26, 507–515.
    [Google Scholar]
  56. Oyston, P. C., Karlyshev, A. V., Wren, B. W. & Titball, R. W. ( 2003; ). Signature-tagged mutagenesis of Yersinia pestis. Adv Exp Med Biol 529, 39–41.
    [Google Scholar]
  57. Panfertsev, E. A., Cherepanov, P. A. & Karimova, G. A. ( 1991; ). Construction of Yersinia pestis strains defective in pH6 synthesis, p. 22–24. In Proceedings of the XIV Scientific and Practical Conference on new technologies and biosystems: Achievements and perspectives. Edited by R. V. Borovik. Obolensk, USSR: Medbioekonomika Press.
  58. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  59. Payne, D., Tatham, D., Williamson, E. D. & Titball, R. W. ( 1998; ). The pH 6 antigen of Yersinia pestis binds to β1-linked galactosyl residues in glycosphingolipids. Infect Immun 66, 4545–4548.
    [Google Scholar]
  60. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis– etiologic agent of plague. Clin Microbiol Rev 10 , 35 –66.
    [Google Scholar]
  61. Porat, R., McCabe, W. R. & Brubaker, R. R. ( 1995; ). Lipopolysaccharide-associated resistance to killing of yersiniae by complement. J Endotoxin Res 2, 91–97.
    [Google Scholar]
  62. Prentki, P., Karch, F., Iida, S. & Meyer, J. ( 1981; ). The plasmid cloning vector pBR325 contains a 482 base-pair-long inverted duplication. Gene 14, 289–299.[CrossRef]
    [Google Scholar]
  63. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  64. Sha, J., Agar, S. L., Baze, W. B., Olano, J. P., Fadl, A. A., Erova, T. E., Wang, S., Foltz, S. M., Suarez, G. & other authors ( 2008; ). Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague. Infect Immun 76, 1390–1409.[CrossRef]
    [Google Scholar]
  65. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology (N.Y.) 1, 784–791.[CrossRef]
    [Google Scholar]
  66. Stepanshina, V. N., Gremiakova, T. A., Anisimov, A. P. & Potapov, V. D. ( 1993; ). The physicochemical and biological characteristics of the Yersinia pestis pH 6 antigen isolated by an immunosorption method. Zh Mikrobiol Epidemiol Immunobiol 3, 12–17 (in Russian).
    [Google Scholar]
  67. Sundin, C., Wolfgang, M. C., Lory, S., Forsberg, Å. & Frithz-Lindsten, E. ( 2002; ). Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa. Microb Pathog 33, 265–277.[CrossRef]
    [Google Scholar]
  68. Thanassi, D. G., Saulino, E. T. & Hultgren, S. J. ( 1998; ). The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1, 223–231.[CrossRef]
    [Google Scholar]
  69. Titball, R. W. & Williamson, E. D. ( 2001; ). Vaccination against bubonic and pneumonic plague. Vaccine 19, 4175–4184.[CrossRef]
    [Google Scholar]
  70. Vodop'ianov, S. O. & Mishan'kin, B. N. ( 1985; ). Adhesion pili in Yersinia pestis. Zh Mikrobiol Epidemiol Immunobiol 6, 13–17 (in Russian).
    [Google Scholar]
  71. Vodop'ianov, S. O., Popova, G. O., Vasil'eva, G. I. & Mishan'kin, B. N. ( 1990; ). The phenomenon of pilus formation in the interaction of Yersinia pestis with macrophages in experimental animals. Zh Mikrobiol Epidemiol Immunobiol 3, 3–6 (in Russian).
    [Google Scholar]
  72. Vodop'ianov, S. O., Atarova, G. T., Oleinikov, I. P., Saiamov, S. R., Orlova, G. M. & Mishan'kin, B. N. ( 1993; ). The fibronectin-binding capacity of Yersinia pestis. Zh Mikrobiol Epidemiol Immunobiol 3, 6–12 (in Russian).
    [Google Scholar]
  73. Vodop'ianov, S. O., Rybyanets, A. A., Verkina, L. M., Romanova, L. V., Sorokina, T. B. & Mishan'kin, B. N. ( 1995; ). The protective activity of the adhesion pili of Yersinia pestis. Zh Mikrobiol Epidemiol Immunobiol 5, 26–29 (in Russian).
    [Google Scholar]
  74. Yang, Y., Merriam, J. J., Mueller, J. P. & Isberg, R. R. ( 1996; ). The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun 64, 2483–2489.
    [Google Scholar]
  75. Zav'yalov, V. P., Abramov, V. M., Cherepanov, P. A., Spirina, G. V., Chernovskaya, T. V., Vasiliev, A. M. & Zav'yalova, G. A. ( 1996; ). pH 6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol 14, 53–57.[CrossRef]
    [Google Scholar]
  76. Zhou, D., Qin, L., Han, Y., Qiu, J., Chen, Z., Li, B., Song, Y., Wang, J., Guo, Z. & other authors ( 2006; ). Global analysis of iron assimilation and Fur regulation in Yersinia pestis. FEMS Microbiol Lett 258, 9–17.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.005678-0
Loading
/content/journal/jmm/10.1099/jmm.0.005678-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error