1887

Abstract

Nosocomial infections caused by often prove difficult to treat owing to their multiple drug resistance. Carbapenems play a pivotal role in the management of severe infections. However, reports of carbapenem resistance have been increasing alarmingly due to production of a variety of carbapenemases including metallo--lactamases (MBLs). This study investigated by both phenotypic and genotypic assays the prevalence of MBLs in a total of 55 strains isolated from a South Indian tertiary care hospital. Random amplified polymorphic DNA (RAPD) genotyping and antimicrobial susceptibility testing for nine clinically relevant antibiotics was done for characterization of isolates. Phenotypic expression of MBLs was examined by a simple double disc synergy (DDS) test, and the presence of the most frequent MBL coding genes, and , was checked by PCR. RAPD analysis generated six clusters of isolates and there was very little correlation between RAPD clusters and resistant profiles. Most of the isolates showed complete or high resistance to imipenem (100 %), meropenem (89 %), amikacin (80 %), cefotaxime (89 %) and ciprofloxacin (72 %). In addition, 44 % of isolates showed a high MIC level (≥16 μg ml) for meropenem. Thirty-nine isolates (70.9 %) were positive for MBL production by the DDS test while gene amplification was seen only in 23 isolates (42 %). Interestingly, none of the isolates showed amplification of . Further investigations on DDS-positive/PCR-negative isolates by spectrophotometric assay showed MBL activity in most of the isolates, suggesting involvement of other genes. The high incidence of isolates possessing MBL activity in the present study represents an emerging threat of complete resistance to carbapenems among spp. in India.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.002105-0
2009-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/4/430.html?itemId=/content/journal/jmm/10.1099/jmm.0.002105-0&mimeType=html&fmt=ahah

References

  1. Chandra, R., Kapil, A., Sharma, P. & Das, B. ( 2002; ). Identification of Acinetobacter species isolated from clinical specimens by amplified ribosomal DNA restriction analysis. Indian J Med Res 116, 1–4.
    [Google Scholar]
  2. CLSI ( 2006; ). Performance Standards for Antimicrobial Susceptibility Testing; 16th informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute.
  3. D'Agata, E. M., Gerrits, M. M., Tang, Y. W., Samore, M. & Kusters, J. G. ( 2001; ). Comparison of pulsed-field gel electrophoresis and amplified fragment-length polymorphism for epidemiological investigations of common nosocomial pathogens. Infect Control Hosp Epidemiol 22, 550–554.[CrossRef]
    [Google Scholar]
  4. Da Silva, G. J., Correia, M., Vital, C., Ribeiro, G., Sousa, J. C., Leitao, R., Peixe, L. & Duarte, A. ( 2002; ). Molecular characterization of bla IMP-5, a new integron-borne metallo-β-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol Lett 215, 33–39.
    [Google Scholar]
  5. Edwards, R., Hawkyard, C. V. & Hashmi, P. S. ( 1998; ). Biological assay for the detection of metallo-beta-lactamases in Bacteroides fragilis. Br J Biomed Sci 55, 169–171.
    [Google Scholar]
  6. Gallego, L. & Towner, K. J. ( 2000; ). Carriage of class I integrons and antibiotic resistance in clinical isolates of Acinetobacter baumannii. In Acinetobacter 2000, 5th International Symposium on the Biology of Acinetobacter, abstract 15. Noordwijkerhout, The Netherlands.
  7. Gerner-Smidt, P., Tjenberg, I. & Ursing, J. ( 1991; ). Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 29, 277–282.
    [Google Scholar]
  8. Gupta, V., Datta, P. & Chander, J. ( 2006; ). Prevalence of metallo-β-lactamase (MBL) producing Pseudomonas spp. and Acinetobacter spp. in a tertiary care hospital in India. J Infect 52, 311–314.[CrossRef]
    [Google Scholar]
  9. Hirakata, Y., Izumikawa, K., Yamaguchui, T., Takemura, H., Tanaka, H., Yoshida, R., Matsuda, J., Nakano, M., Tomono, K. & other authors ( 1998; ). Rapid detection and evaluation of clinical characteristics of emerging multiple-drug-resistant Gram-negative rods carrying the metallo-beta lactamase gene bla IMP. Antimicrob Agents Chemother 42, 2006–2011.
    [Google Scholar]
  10. Jeong, S. H., Kwon Bae, I., Park, K. O., An, Y. J., Sohn, S. G., Jang, S. J., Sung, K. H., Yang, K. S., Lee, K. & other authors ( 2006; ). Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea. J Microbiol 44, 423–431.
    [Google Scholar]
  11. Jesudason, M. V., Kandathil, A. J. & Balaji, V. ( 2005; ). Comparison of two methods to detect carbapenemase and metallo-beta-lactamase production in clinical isolates. Indian J Med Res 121, 780–783.
    [Google Scholar]
  12. Jones, R. N., Biedenbach, D. J., Sader, H. S., Fritsche, T. R., Toleman, M. A. & Walsh, T. R. ( 2005; ). Emerging epidemic of metallo-β-lactamase mediated resistances. Diagn Microbiol Infect Dis 51, 77–84.[CrossRef]
    [Google Scholar]
  13. Joshi, S. G., Litake, G. M., Ghole, V. S. & Niphadkar, K. B. ( 2003a; ). Plasmid borne extended spectrum beta-lactamase in a clinical isolate of Acinetobacter baumannii. J Med Microbiol 52, 1125–1127.
    [Google Scholar]
  14. Joshi, S. G., Litake, G. M., Niphadkar, K. B. & Ghole, V. S. ( 2003b; ). Multidrug resistant Acinetobacter baumannii isolates from a teaching hospital. J Infect Chemother 9, 187–190.[CrossRef]
    [Google Scholar]
  15. Kenchappa, P. & Sreenivasmurthy, B. ( 2003; ). Simplified panel of assimilation tests for identification of Acinetobacter species. Indian J Pathol Microbiol 46, 700–706.
    [Google Scholar]
  16. Lauretti, L., Riccio, M. L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R. & Rossolini, G. M. ( 1999; ). Cloning and characterization of bla VIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 43, 1584–1590.
    [Google Scholar]
  17. Lee, K., Yum, J. H., Yong, D., Lee, H. M., Kim, H. D., Docquier, J. D., Rossolini, G. M. & Chong, Y. ( 2005; ). Novel acquired metallo-beta-lactamase gene, bla SIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 49, 4485–4491.[CrossRef]
    [Google Scholar]
  18. Lee, J. H., Choi, C. H., Kang, H. Y., Lee, J. Y., Kim, J., Lee, Y. C., Seol, S. Y., Cho, D. T., Kim, K. W., Song, D. Y. & Lee, J. C. ( 2007; ). Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU. J Antimicrob Chemother 59, 633–639.[CrossRef]
    [Google Scholar]
  19. Liu, P. Y. & Wu, W. L. ( 1997; ). Use of different PCR-based DNA fingerprinting techniques and pulsed-field gel electrophoresis to investigate the epidemiology of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Diagn Microbiol Infect Dis 29, 19–28.[CrossRef]
    [Google Scholar]
  20. Manikal, V. M., Landman, D., Saurina, G., Oydna, E., Lal, H. & Quale, J. ( 2000; ). Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: citywide prevalence, inter-institutional spread, and relation to antibiotic usage. Clin Infect Dis 31, 101–106.[CrossRef]
    [Google Scholar]
  21. Mendiratta, D. K., Deotale, V. & Narang, P. ( 2005; ). Metallo-beta-lactamase producing Pseudomonas aeruginosa in a hospital from a rural area. Indian J Med Res 121, 701–703.
    [Google Scholar]
  22. Navon-Venezia, S., Ben-Ami, R. & Carmeli, Y. ( 2005; ). Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis 18, 306–313.[CrossRef]
    [Google Scholar]
  23. Peleg, A. Y., Franlin, C., Bell, J. M. & Spelman, D. W. ( 2005; ). Dissemination of metallo- β-lactamase gene bla IMP-4 among gram negative pathogens in a clinical setting in Australia. Clin Infect Dis 41, 1549–1556.[CrossRef]
    [Google Scholar]
  24. Poirel, L., Naas, T., Nicolas, D., Collet, L., Bellais, S., Cavallo, J. D. & Nordmann, P. ( 2000; ). Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44, 891–897.[CrossRef]
    [Google Scholar]
  25. Prashanth, K. & Badrinath, S. ( 2000; ). Simplified phenotypic tests for identification of Acinetobacter spp. and their antimicrobial susceptibility status. J Med Microbiol 49, 773–778.
    [Google Scholar]
  26. Prashanth, K. & Badrinath, S. ( 2004; ). In vitro susceptibility pattern of Acinetobacter species to commonly used cephalosporins, quinolones and aminoglycosides. Indian J Med Microbiol 22, 97–103.
    [Google Scholar]
  27. Prashanth, K. & Badrinath, S. ( 2005; ). Epidemiological investigation of nosocomial Acinetobacter infections using AP-PCR and pulse field gel electrophoresis. Indian J Med Res 122, 408–418.
    [Google Scholar]
  28. Prashanth, K. & Badrinath, S. ( 2006; ). Nosocomial infections due to Acinetobacter species: clinical findings, risk and prognostic factors. Indian J Med Microbiol 24, 39–44.[CrossRef]
    [Google Scholar]
  29. Sarkar, B., Biswas, D., Prasad, R. & Sharma, J. P. ( 2006; ). A clinicomicrobiological study on the importance of Pseudomonas in nosocomially infected ICU patients, with special reference to metallo beta-lactamase production. Indian J Pathol Microbiol 49, 44–48.
    [Google Scholar]
  30. Seward, R. J. ( 1999; ). Detection of integrons in worldwide nosocomial isolates of Acinetobacter spp. Clin Microbiol Infect 5, 308–318.
    [Google Scholar]
  31. Sinha, M. & Srinivasa, H. ( 2007; ). Mechanisms of resistance to carbapenems in meropenem resistant Acinetobacter isolates from clinical samples. Indian J Med Microbiol 25, 121–125.[CrossRef]
    [Google Scholar]
  32. Sinha, M., Srinivasa, H. & Macaden, R. ( 2007; ). Antibiotic resistance profile and extended spectrum beta-lactamase (ESBL) production in Acinetobacter species. Indian J Med Res 126, 63–67.
    [Google Scholar]
  33. Taneja, N., Maharwal, S. & Sharma, M. ( 2003; ). Imipenem resistance in nonfermenters causing nosocomial urinary tract infections. Indian J Med Sci 57, 294–299.
    [Google Scholar]
  34. Vila, J., Marcos, M. A. & Jimenez de Anta, M. T. ( 1996; ). A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol 44, 482–489.[CrossRef]
    [Google Scholar]
  35. Walsh, T. R., Toleman, M. A., Poirel, L. & Nordmann, P. ( 2005; ). Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 18, 306–325.[CrossRef]
    [Google Scholar]
  36. Yano, H., Kuga, A., Okamoto, R., Kitasato, H., Kobayashi, T. & Inoue, M. ( 2001; ). Plasmid-encoded metallo-β-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother 45, 1343–1348.[CrossRef]
    [Google Scholar]
  37. Yong, D., Lee, K., Yum, J. H., Shin, H. B., Rossolini, G. M. & Chong, Y. ( 2002; ). Imipenem-EDTA disk method for differentiation of metallo-β-lactamase producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 40, 3798–3801.[CrossRef]
    [Google Scholar]
  38. Yum, J. H., Yi, K., Lee, H., Yong, D., Lee, K., Kim, J. M., Rossolini, G. M. & Chong, Y. ( 2002; ). Molecular characterization of metallo-β-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two novel integrons carrying blaVIM-2 gene cassettes. J Antimicrob Chemother 49, 837–840.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.002105-0
Loading
/content/journal/jmm/10.1099/jmm.0.002105-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error