1887

Abstract

is a major threat to public health worldwide. It is the causative agent for multiple disease presentations including urinary tract infection, septicemia, liver abscess, wound infection and respiratory tract infection. causes community- and hospital-acquired pneumonia, which is a devastating disease associated with high mortality rates.

There is a growing concern about the emergence of multidrug-resistant strains complicating the treatment with the current available therapeutics; therefore, there is an urgent need for the development of new antimicrobial agents.

causes an acute respiratory disease in mice and in the current work we investigated the capability to perform non-invasive monitoring of bioluminescent to monitor therapeutic efficacy.

We engineered a bioluminescence reporter strain of to monitor the impact of antibiotics in a murine respiratory disease model.

We demonstrate that bioluminescence correlates with bacterial numbers in host tissues allowing for a non-invasive enumeration of bacterial replication . Light production is directly linked to bacterial viability, and this novel bioluminescent strain enabled monitoring of the efficacy of meropenem therapy in arresting bacterial proliferation in the lung.

The use of non-invasive bioluminescent imaging improves preclinical animal model testing to detect study outcome earlier and with higher sensitivity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001686
2023-05-30
2024-05-05
Loading full text...

Full text loading...

References

  1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11:589–603 [View Article] [PubMed]
    [Google Scholar]
  2. Rock C, Thom KA, Masnick M, Johnson JK, Harris AD et al. Frequency of Klebsiella pneumoniae carbapenemase (KPC)-producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infect Control Hosp Epidemiol 2014; 35:426–429 [View Article] [PubMed]
    [Google Scholar]
  3. Bagley ST. Habitat association of Klebsiella species. Infect Control 1985; 6:52–58 [View Article] [PubMed]
    [Google Scholar]
  4. Ahmad TA, El-Sayed LH, Haroun M, Hussein AA, El Ashry ESH. Development of immunization trials against Klebsiella pneumoniae. Vaccine 2012; 30:2411–2420 [View Article] [PubMed]
    [Google Scholar]
  5. Gupta A. Hospital-acquired infections in the neonatal intensive care unit--Klebsiella pneumoniae. Semin Perinatol 2002; 26:340–345 [View Article] [PubMed]
    [Google Scholar]
  6. Matsen JM. The sources of hospital infection. Medicine 1973; 52:271–277 [View Article] [PubMed]
    [Google Scholar]
  7. Jarvis WR, Munn VP, Highsmith AK, Culver DH, Hughes JM. The epidemiology of nosocomial infections caused by Klebsiella pneumoniae. Infect Control 1985; 6:68–74 [View Article] [PubMed]
    [Google Scholar]
  8. Yankov IV, Shmilev TI. Ventilator-associated pneumonias in children (I)--diagnostic criteria, etiology and pathogenesis. Folia Med 2012; 54:5–11 [PubMed]
    [Google Scholar]
  9. Doern GV. Trends in antimicrobial susceptibility of bacterial pathogens of the respiratory tract. Am J Med 1995; 99:3S–7S [View Article] [PubMed]
    [Google Scholar]
  10. Jay SJ. Nosocomial pneumonia. The challenge of a changing clinical spectrum. Postgrad Med 1983; 74:221–225 [View Article] [PubMed]
    [Google Scholar]
  11. Carpenter JL. Klebsiella pulmonary infections: occurrence at one medical center and review. Rev Infect Dis 1990; 12:672–682 [View Article] [PubMed]
    [Google Scholar]
  12. Karaolis DKR, Newstead MW, Zeng X, Hyodo M, Hayakawa Y et al. Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect Immun 2007; 75:4942–4950 [View Article] [PubMed]
    [Google Scholar]
  13. Lau HY, Clegg S, Moore TA. Identification of Klebsiella pneumoniae genes uniquely expressed in a strain virulent using a murine model of bacterial pneumonia. Microb Pathog 2007; 42:148–155 [View Article] [PubMed]
    [Google Scholar]
  14. Romero EDV, Padilla TP, Hernández AH, Grande RP, Vázquez MF et al. Prevalence of clinical isolates of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum beta-lactamases. Diagn Microbiol Infect Dis 2007; 59:433–437 [View Article] [PubMed]
    [Google Scholar]
  15. Nishi T, Tsuchiya K. Therapeutic effects of cefotiam and cefazolin on experimental pneumonia caused by Klebsiella pneumoniae DT-S in mice. Antimicrob Agents Chemother 1980; 18:549–556 [View Article] [PubMed]
    [Google Scholar]
  16. Hansen DS, Gottschau A, Kolmos HJ. Epidemiology of Klebsiella bacteraemia: a case control study using Escherichia coli bacteraemia as control. J Hosp Infect 1998; 38:119–132 [View Article] [PubMed]
    [Google Scholar]
  17. Hervás JA, Alomar A, Salvá F, Reina J, Benedí VJ. Neonatal sepsis and meningitis in Mallorca, Spain, 1977-1991. Clin Infect Dis 1993; 16:719–724 [View Article] [PubMed]
    [Google Scholar]
  18. Graybill JR, Marshall LW, Charache P, Wallace CK, Melvin VB. Nosocomial pneumonia. A continuing major problem. Am Rev Respir Dis 1973; 108:1130–1140 [View Article] [PubMed]
    [Google Scholar]
  19. Leowski J. Mortality from acute respiratory infections in children under 5 years of age: global estimates. World Health Stat Q 1986; 39:138–144 [PubMed]
    [Google Scholar]
  20. Meyer KS, Urban C, Eagan JA, Berger BJ, Rahal JJ. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med 1993; 119:353–358 [View Article] [PubMed]
    [Google Scholar]
  21. Feldman MF, Mayer Bridwell AE, Scott NE, Vinogradov E, McKee SR et al. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2019; 116:18655–18663 [View Article] [PubMed]
    [Google Scholar]
  22. Arnold RS, Thom KA, Sharma S, Phillips M, Kristie Johnson J et al. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J 2011; 104:40–45 [View Article] [PubMed]
    [Google Scholar]
  23. Rapp RP, Urban C. Klebsiella pneumoniae carbapenemases in Enterobacteriaceae: history, evolution, and microbiology concerns. Pharmacotherapy 2012; 32:399–407 [View Article] [PubMed]
    [Google Scholar]
  24. da Silva RM, Traebert J, Galato D. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert Opin Biol Ther 2012; 12:663–671 [View Article] [PubMed]
    [Google Scholar]
  25. Chong Y, Ito Y, Kamimura T. Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol 2011; 11:1499–1504 [View Article] [PubMed]
    [Google Scholar]
  26. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009; 9:228–236 [View Article] [PubMed]
    [Google Scholar]
  27. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003; 17:545–580 [View Article] [PubMed]
    [Google Scholar]
  28. Warawa JM, Lawrenz MB. Bioluminescent imaging of bacteria during mouse infection. Methods Mol Biol 2014; 1098:169–181 [View Article] [PubMed]
    [Google Scholar]
  29. Cronin M, Akin AR, Francis KP, Tangney M. In vivo bioluminescence imaging of intratumoral bacteria. Methods Mol Biol 2016; 1409:69–77 [View Article] [PubMed]
    [Google Scholar]
  30. Koczerka M, Lantier I, Pinard A, Morillon M, Deperne J et al. In vivo tracking of bacterial colonization in different murine models using bioluminescence: the example of Salmonella. Methods Mol Biol 2022; 2427:235–248 [View Article] [PubMed]
    [Google Scholar]
  31. Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002; 4:235–260 [View Article] [PubMed]
    [Google Scholar]
  32. Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors 2011; 11:180–206 [View Article] [PubMed]
    [Google Scholar]
  33. Warawa JM, Long D, Rosenke R, Gardner D, Gherardini FC. Bioluminescent diagnostic imaging to characterize altered respiratory tract colonization by the burkholderia pseudomallei capsule mutant. Front Microbiol 2011; 2:133 [View Article] [PubMed]
    [Google Scholar]
  34. Sun Y, Connor MG, Pennington JM, Lawrenz MB. Development of bioluminescent bioreporters for in vitro and in vivo tracking of Yersinia pestis. PLoS One 2012; 7:e47123 [View Article] [PubMed]
    [Google Scholar]
  35. Gonzalez RJ, Weening EH, Frothingham R, Sempowski GD, Miller VL. Bioluminescence imaging to track bacterial dissemination of Yersinia pestis using different routes of infection in mice. BMC Microbiol 2012; 12:1–12 [View Article] [PubMed]
    [Google Scholar]
  36. Trcek J, Berschl K, Trülzsch K. In vivo analysis of Yersinia enterocolitica infection using luxCDABE. FEMS Microbiol Lett 2010; 307:201–206 [View Article] [PubMed]
    [Google Scholar]
  37. Mott TM, Johnston RK, Vijayakumar S, Estes DM, Motamedi M et al. Monitoring therapeutic treatments against Burkholderia infections using imaging techniques. Pathogens 2013; 2:383–401 [View Article] [PubMed]
    [Google Scholar]
  38. Slate AR, Bandyopadhyay S, Francis KP, Papich MG, Karolewski B et al. Efficacy of enrofloxacin in a mouse model of sepsis. J Am Assoc Lab Anim Sci 2014; 53:381–386 [PubMed]
    [Google Scholar]
  39. Sha J, Rosenzweig JA, Kirtley ML, van Lier CJ, Fitts EC et al. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague. Microb Pathog 2013; 55:39–50 [View Article] [PubMed]
    [Google Scholar]
  40. Zhang T, Li S-Y, Nuermberger EL. Autoluminescent Mycobacterium tuberculosis for rapid, real-time, non-invasive assessment of drug and vaccine efficacy. PLoS One 2012; 7:e29774 [View Article] [PubMed]
    [Google Scholar]
  41. Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ et al. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 2001; 69:3350–3358 [View Article] [PubMed]
    [Google Scholar]
  42. Colardyn F, Faulkner KL. Intravenous meropenem versus imipenem/cilastatin in the treatment of serious bacterial infections in hospitalized patients. Meropenem serious infection study group. J Antimicrob Chemother 1996; 38:523–537 [View Article] [PubMed]
    [Google Scholar]
  43. Mouton YJ, Beuscart C. Empirical monotherapy with meropenem in serious bacterial infections. Meropenem study group. J Antimicrob Chemother 1995; 36 Suppl A:145–156 [View Article] [PubMed]
    [Google Scholar]
  44. Sieger B, Berman SJ, Geckler RW, Farkas SA. Empiric treatment of hospital-acquired lower respiratory tract infections with meropenem or ceftazidime with tobramycin: a randomized study. Meropenem lower respiratory infection group. Crit Care Med 1997; 25:1663–1670 [View Article] [PubMed]
    [Google Scholar]
  45. Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems?. Clin Microbiol Infect 2011; 17:1135–1141 [View Article] [PubMed]
    [Google Scholar]
  46. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2012; 55:943–950 [View Article] [PubMed]
    [Google Scholar]
  47. Robilotti E, Deresinski S. Carbapenemase-producing Klebsiella pneumoniae. F1000Prime Rep 2014; 6:80 [View Article] [PubMed]
    [Google Scholar]
  48. Sarubbi F, Franzus B, Verghese A. Comparative activity of meropenem (SM-7338) against major respiratory pathogens and amikacin-resistant nosocomial isolates. Eur J Clin Microbiol Infect Dis 1992; 11:65–68 [View Article] [PubMed]
    [Google Scholar]
  49. Edwards JR. Meropenem: a microbiological overview. J Antimicrob Chemother 1995; 36 Suppl A:1–17 [View Article] [PubMed]
    [Google Scholar]
  50. Birnbaum J, Kahan FM, Kropp H, MacDonald JS. Carbapenems, a new class of beta-lactam antibiotics. Discovery and development of imipenem/cilastatin. Am J Med 1985; 78:3–21 [View Article] [PubMed]
    [Google Scholar]
  51. Bax RP, Bastain W, Featherstone A, Wilkinson DM, Hutchison M et al. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother 1989; 24 Suppl A:311–320 [View Article] [PubMed]
    [Google Scholar]
  52. Hutchison M, Faulkner KL, Turner PJ, Haworth SJ, Sheikh W et al. A compilation of meropenem tissue distribution data. J Antimicrob Chemother 1995; 36 Suppl A:43–56 [View Article] [PubMed]
    [Google Scholar]
  53. DeRyke CA, Banevicius MA, Fan HW, Nicolau DP. Bactericidal activities of meropenem and ertapenem against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a neutropenic mouse thigh model. Antimicrob Agents Chemother 2007; 51:1481–1486 [View Article] [PubMed]
    [Google Scholar]
  54. Harada Y, Morinaga Y, Kaku N, Nakamura S, Uno N et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect 2014; 20:831–839 [View Article] [PubMed]
    [Google Scholar]
  55. Hilliard JJ, Melton JL, Hall L, Abbanat D, Fernandez J et al. Comparative effects of carbapenems on bacterial load and host immune response in a Klebsiella pneumoniae murine pneumonia model. Antimicrob Agents Chemother 2011; 55:836–844 [View Article] [PubMed]
    [Google Scholar]
  56. Salloum NA, Kissoyan KAB, Fadlallah S, Cheaito K, Araj GF et al. Assessment of combination therapy in BALB/c mice injected with carbapenem-resistant Enterobacteriaceae strains. Front Microbiol 2015; 6:999 [View Article] [PubMed]
    [Google Scholar]
  57. Fodah RA, Scott JB, Tam H-H, Yan P, Pfeffer TL et al. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model. PLoS One 2014; 9:e107394 [View Article] [PubMed]
    [Google Scholar]
  58. Lawrenz MB, Fodah RA, Gutierrez MG, Warawa J. Intubation-mediated intratracheal (IMIT) instillation: a noninvasive, lung-specific delivery system. J Vis Exp 2014e52261 [View Article] [PubMed]
    [Google Scholar]
  59. Mikerov AN, Gan X, Umstead TM, Miller L, Chinchilli VM et al. Sex differences in the impact of ozone on survival and alveolar macrophage function of mice after Klebsiella pneumoniae infection. Respir Res 2008; 9:24 [View Article] [PubMed]
    [Google Scholar]
  60. Lawrenz MB, Biller AE, Cramer DE, Kraenzle JL, Sotsky JB et al. Development and evaluation of murine lung-specific disease models for Pseudomonas aeruginosa applicable to therapeutic testing. Pathog Dis 2015; 73:ftv025 [View Article] [PubMed]
    [Google Scholar]
  61. Lawrenz MB, Biller AE, Cramer DE, Kraenzle JL, Sotsky JB et al. Development and evaluation of murine lung-specific disease models for Pseudomonas aeruginosa applicable to therapeutic testing. Pathog Dis 2015; 73:ftv025 [View Article] [PubMed]
    [Google Scholar]
  62. Tian X, Gao Y, Wang S, Adnan Hameed HM, Yu W et al. Rapid visualized assessment of drug efficacy in live mice with a selectable marker-free autoluminescent Klebsiella pneumoniae. Biosens Bioelectron 2021; 177:112919 [View Article] [PubMed]
    [Google Scholar]
  63. Hu X, Cai Y, Wang Y, Wang R, Wang J et al. Imaging of bioluminescent Klebsiella pneumoniae induced pulmonary infection in an immunosuppressed mouse model. J Int Med Res 2020; 48:300060520956473 [View Article] [PubMed]
    [Google Scholar]
  64. Broberg CA, Wu W, Cavalcoli JD, Miller VL, Bachman MA. Complete genome sequence of Klebsiella pneumoniae strain ATCC 43816 KPPR1, a rifampin-resistant mutant commonly used in animal, genetic, and molecular biology studies. Genome Announc 2014; 2:e00924-14 [View Article] [PubMed]
    [Google Scholar]
  65. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13:269–284 [View Article] [PubMed]
    [Google Scholar]
  66. Siu LK, Yeh K-M, Lin J-C, Fung C-P, Chang F-Y. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis 2012; 12:881–887 [View Article] [PubMed]
    [Google Scholar]
  67. Girometti N, Lewis RE, Giannella M, Ambretti S, Bartoletti M et al. Klebsiella pneumoniae bloodstream infection: epidemiology and impact of inappropriate empirical therapy. Medicine 2014; 93:298–309 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001686
Loading
/content/journal/jmm/10.1099/jmm.0.001686
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error