1887

Abstract

Fosfomycin (FOF) is the first antimicrobial of the epoxide class. It is commercially available in oral and parenteral formulations. Oral FOF is widely used to treat uncomplicated cystitis in women, while parenteral FOF is extensively utilized for upper urinary tract infections. FOF has a broad-spectrum bactericidal activity with a low risk of cross-resistance to other antimicrobial classes. Therefore, parenteral FOF is increasingly prescribed adjunctive therapy to treat extra-urinary tract infections caused by multidrug-resistant, Gram-negative bacteria.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001573
2022-08-11
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/71/8/jmm001573.html?itemId=/content/journal/jmm/10.1099/jmm.0.001573&mimeType=html&fmt=ahah

References

  1. Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK et al. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 1969; 166:122–123 [View Article]
    [Google Scholar]
  2. Carlone NA, Borsotto M, Cuffini AM, Savoia D. Effect of fosfomycin trometamol on bacterial adhesion in comparison with other chemotherapeutic agents. Eur Urol 1987; 13 Suppl 1:86–91 [View Article]
    [Google Scholar]
  3. Yokota S, Okabayashi T, Yoto Y, Hori T, Tsutsumi H et al. Fosfomycin suppresses RS-virus-induced Streptococcus pneumoniae and Haemophilus influenzae adhesion to respiratory epithelial cells via the platelet-activating factor receptor. FEMS Microbiol Lett 2010; 310:84–90 [View Article]
    [Google Scholar]
  4. Silver LL. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 2017; 7: [View Article]
    [Google Scholar]
  5. De Smet KAL, Kempsell KE, Gallagher A, Duncan K, Young DB. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 1999; 145:3177–3184 [View Article]
    [Google Scholar]
  6. McCoy AJ, Sandlin RC, Maurelli AT. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 2003; 185:1218–1228 [View Article]
    [Google Scholar]
  7. Borisova M, Gisin J, Mayer C. Blocking peptidoglycan recycling in Pseudomonas aeruginosa attenuates intrinsic resistance to fosfomycin. Microb Drug Resist 2014; 20:231–237 [View Article]
    [Google Scholar]
  8. Gil-Marqués ML, Moreno-Martínez P, Costas C, Pachón J, Blázquez J et al. Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in Acinetobacter baumannii. J Antimicrob Chemother 2018; 73:2960–2968 [View Article]
    [Google Scholar]
  9. Li X, Quan J, Yang Y, Ji J, Liu L et al. Abrp, a new gene, confers reduced susceptibility to tetracycline, glycylcine, chloramphenicol and fosfomycin classes in Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2016; 35:1371–1375 [View Article]
    [Google Scholar]
  10. Alper MD, Ames BN. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol 1978; 133:149–157 [View Article]
    [Google Scholar]
  11. Tsuruoka T, Miyata A, Yamada Y. Two kinds of mutants defective in multiple carbohydrate utilization isolated from in vitro fosfomycin-resistant strains of Escherichia coli K--12. J Antibiot 1978; 31:192–201 [View Article]
    [Google Scholar]
  12. Venkateswaran PS, Wu HC. Isolation and characterization of a phosphonomycin-resistant mutant of Escherichia coli K-12. J Bacteriol 1972; 110:935–944 [View Article]
    [Google Scholar]
  13. Horii T, Kimura T, Sato K, Shibayama K, Ohta M. Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Antimicrob Agents Chemother 1999; 43:789–793 [View Article]
    [Google Scholar]
  14. Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev 2016; 29:321–347 [View Article]
    [Google Scholar]
  15. Guo Q, Tomich AD, McElheny CL, Cooper VS, Stoesser N et al. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J Antimicrob Chemother 2016; 71:2460–2465 [View Article]
    [Google Scholar]
  16. Mathur P, Veeraraghavan B, Devanga Ragupathi NK, Inbanathan FY, Khurana S et al. Multiple mutations in lipid-A modification pathway & novel fosA variants in colistin-resistant Klebsiella pneumoniae. Future Sci OA 2018; 4:FSO319 [View Article]
    [Google Scholar]
  17. Pakhomova S, Rife CL, Armstrong RN, Newcomer ME. Structure of fosfomycin resistance protein FosA from transposon Tn2921. Protein Sci 2004; 13:1260–1265 [View Article]
    [Google Scholar]
  18. Xu H, Miao V, Kwong W, Xia R, Davies J. Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Lett Appl Microbiol 2011; 52:427–429 [View Article]
    [Google Scholar]
  19. Yang TY, Lu PL, Tseng SP. Update on fosfomycin-modified genes in Enterobacteriaceae. J Microbiol Immunol Infect 2019; 52:9–21 [View Article]
    [Google Scholar]
  20. Sharma A, Sharma R, Bhattacharyya T, Bhando T, Pathania R. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF. J Antimicrob Chemother 2017; 72:68–74 [View Article]
    [Google Scholar]
  21. Truong-Bolduc QC, Wang Y, Hooper DC. Tet38 efflux pump contributes to fosfomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2018; 62:e00927-18 [View Article]
    [Google Scholar]
  22. Trinh TD, Smith JR, Rybak MJ. Parenteral fosfomycin for the treatment of multidrug resistant bacterial infections: the rise of the epoxide. Pharmacotherapy 2019; 39:1077–1094 [View Article]
    [Google Scholar]
  23. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the infectious diseases. Soc Am Eur Soc Microbiol Infect Dis Clin Infect Dis 2011; 52:e103–20
    [Google Scholar]
  24. Derington CG, Benavides N, Delate T, Fish DN. Multiple-dose oral fosfomycin for treatment of complicated urinary tract infections in the outpatient setting. Open Forum Infect Dis 2020; 7:faa034 [View Article]
    [Google Scholar]
  25. Qiao L-D, Zheng B, Chen S, Yang Y, Zhang K et al. Evaluation of three-dose fosfomycin tromethamine in the treatment of patients with urinary tract infections: an uncontrolled, open-label, multicentre study. BMJ Open 2013; 3:e004157 [View Article]
    [Google Scholar]
  26. Bergan T. Degree of absorption, pharmacokinetics of fosfomycin trometamol and duration of urinary antibacterial activity. Infection 1990; 18 Suppl 2:S65–9 [View Article]
    [Google Scholar]
  27. Matsumoto T, Muratani T, Nakahama C, Tomono K. Clinical effects of 2 days of treatment by fosfomycin calcium for acute uncomplicated cystitis in women. J Infect Chemother 2011; 17:80–86 [View Article]
    [Google Scholar]
  28. Kaye KS, Rice LB, Dane AL, Stus V, Sagan O et al. Fosfomycin for injection (ZTI-01) versus piperacillin-tazobactam for the treatment of complicated urinary tract infection including acute pyelonephritis: ZEUS, A phase 2/3 randomized trial. Clin Infect Dis 2019; 69:2045–2056 [View Article]
    [Google Scholar]
  29. Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect 2019; 25:943–950 [View Article]
    [Google Scholar]
  30. Gisin J, Schneider A, Nägele B, Borisova M, Mayer C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol 2013; 9:491–493 [View Article]
    [Google Scholar]
  31. Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics 2013; 2:217–236 [View Article]
    [Google Scholar]
  32. Thompson MK, Keithly ME, Goodman MC, Hammer ND, Cook PD et al. Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus. Biochemistry 2014; 53:755–765 [View Article]
    [Google Scholar]
  33. Castañeda-García A, Rodríguez-Rojas A, Guelfo JR, Blázquez J. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol 2009; 191:6968–6974 [View Article]
    [Google Scholar]
  34. Kadner RJ, Winkler HH. Isolation and characterization of mutations affecting the transport of hexose phosphates in Escherichia coli. J Bacteriol 1973; 113:895–900 [View Article]
    [Google Scholar]
  35. Nilsson AI, Berg OG, Aapevall O, Kahlmeter G, Andersson DI. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother 2003; 47:2850–2858 [View Article]
    [Google Scholar]
  36. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 2010; 35:333–337 [View Article]
    [Google Scholar]
  37. Cao M, Bernat BA, Wang Z, Armstrong RN, Helmann JD. FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol 2001; 183:2380–2383 [View Article]
    [Google Scholar]
  38. Etienne J, Gerbaud G, Fleurette J, Courvalin P. Characterization of staphylococcal plasmids hybridizing with the fosfomycin resistance gene fosB. FEMS Microbiol Lett 1991; 68:119–122 [View Article]
    [Google Scholar]
  39. Qu T, Shi K, Ji J, Yang Q, Du X et al. Fosfomycin resistance among vancomycin-resistant enterococci owing to transfer of a plasmid harbouring the fosB gene. Int J Antimicrob Agents 2014; 43:361–365 [View Article]
    [Google Scholar]
  40. Zilhao R, Courvalin P. Nucleotide sequence of the fosB gene conferring fosfomycin resistance in Staphylococcus epidermidis. FEMS Microbiol Lett 1990; 56:267–272 [View Article]
    [Google Scholar]
  41. García P, Arca P, Evaristo Suárez J. Product of fosC, a gene from Pseudomonas syringae, mediates fosfomycin resistance by using ATP as cosubstrate. Antimicrob Agents Chemother 1995; 39:1569–1573 [View Article]
    [Google Scholar]
  42. Kobayashi S, Kuzuyama T, Seto H. Characterization of the fomA and fomB gene products from Streptomyces wedmorensis, which confer fosfomycin resistance on Escherichia coli. Antimicrob Agents Chemother 2000; 44:647–650 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001573
Loading
/content/journal/jmm/10.1099/jmm.0.001573
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error