This study aimed to evaluate whether the antibiotic fidaxomicin has activity against (Mtb). 38 fully drug-sensitive Mtb strains and 34 multidrug-resistant tuberculosis (MDR-TB) strains were tested using the microplate alamar blue assay (MABA) method to determine the minimum inhibitory concentrations (MICs) for fidaxomicin and rifampicin. Fidaxomicin has high activity against Mtb and is a potential drug to treat Mtb, and MDR-TB infections in particular.

This study was supported by the:
  • GuirongWang , Tongzhou Yunhe Project , (Award YH201917)
  • GuirongWang , Beijing Talents foundation , (Award 2018000021223)
  • GuirongWang , National Major Science and Technology Projects of China , (Award 2017ZX10302301-003-004)
  • GuirongWang , National Major Science and Technology Projects of China , (Award 2017ZX09304009-004)
  • HaoLi , National Natural Science Foundation of China , (Award 32070937)
  • GuirongWang , National Natural Science Foundation of China , (Award 81703632)

Article metrics loading...

Loading full text...

Full text loading...


  1. WHO Global tuberculosis report. 2020
  2. Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 2015; 5: a017863 [CrossRef] [PubMed]
    [Google Scholar]
  3. Zhanel GG, Walkty AJ, Karlowsky JA. Fidaxomicin: a novel agent for the treatment of Clostridium difficile infection. Can J Infect Dis Med Microbiol 2015; 26: 305 312 [CrossRef] [PubMed]
    [Google Scholar]
  4. Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 2011; 364: 422 431 [CrossRef] [PubMed]
    [Google Scholar]
  5. Boyaci H, Chen J, Lilic M, Palka M, Mooney RA et al. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. Elife 2018; 7: e34823 26 02 2018 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kurabachew M, Lu SHJ, Krastel P, Schmitt EK, Suresh BL et al. Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis . J Antimicrob Chemother 2008; 62: 713 719 [CrossRef] [PubMed]
    [Google Scholar]
  7. Huang H, Ding N, Yang T, Li C, Jia X et al. Cross-Sectional whole-genome sequencing and epidemiological study of multidrug-resistant Mycobacterium tuberculosis in China. Clin Infect Dis 2019; 69: 405 413 [CrossRef] [PubMed]
    [Google Scholar]
  8. Molodtsov V, Scharf NT, Stefan MA, Garcia GA, Murakami KS. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis . . Mol Microbiol 2017; 103: 1034 1045 [CrossRef] [PubMed]
    [Google Scholar]
  9. Brandis G, Wrande M, Liljas L, Hughes D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 2012; 85: 142 151 [CrossRef] [PubMed]
    [Google Scholar]
  10. Comas I, Borrell S, Roetzer A, Rose G, Malla B et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 2011; 44: 106 110 [CrossRef] [PubMed]
    [Google Scholar]
  11. Vargas AP, Rios AA, Grandjean L, Kirwan DE, Gilman RH et al. Determination of potentially novel compensatory mutations in rpoc associated with rifampin resistance and rpob mutations in Mycobacterium tuberculosis clinical isolates from peru. Int J Mycobacteriol 2020; 9: 121 137 [CrossRef] [PubMed]
    [Google Scholar]
  12. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341: 647 650 [CrossRef] [PubMed]
    [Google Scholar]

Data & Media loading...


Supplementary material 1

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error