1887

Abstract

Gram-negative bacteria are a common source of infection both in hospitals and in the community, and antimicrobial resistance is frequent among them, making antibiotic therapy difficult, especially when these isolates carry carbapenem resistance determinants.

. A simple method to detect all the commonly found carbapenemases in Germany was not available.

The aim of this study was to develop a multiplex PCR for the rapid and reliable identification of the most prevalent carbapenemase-encoding genes in Gram-negative bacteria in Germany.

Data from the German Gram-negative reference laboratory revealed the most prevalent carbapenemase groups in Germany were (in order of prevalence): , , , , , , , , , , IS , , and . We developed and tested two multiplex PCRs against 83 carbapenem-resistant Gram-negative clinical isolates. Primers were designed for each carbapenemase group within conserved regions of the encoding genes obtained from publicly available databases. Multiplex-1 included the carbapenemase groups , , , , and , while multiplex-2 included , , , , IS and .

In the initial evaluation, all but one of the carbapenemases encoded by 75 carbapenemase-positive isolates were detected using the two multiplex PCRs, while no false-positive results were obtained from the remaining eight isolates. After evaluation, we tested 546 carbapenem-resistant isolates using the multiplex PCRs, and all carbapenemases were detected.

A rapid and reliable method was developed for detection and differentiation of 12 of the most prevalent carbapenemase groups found in Germany. This method allows for the rapid testing of clinical isolates prior to species identification and does not require prior phenotypical characterization, constituting a rapid and valuable tool in the management of infections in hospitals.

Funding
This study was supported by the:
  • LeaBiniossek , Deutsches Zentrum für Infektionsforschung , (Award TI 07.003)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001310
2021-01-15
2021-03-02
Loading full text...

Full text loading...

References

  1. Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: detection and antimicrobial therapy. Front Microbiol 2019; 10: 10 [CrossRef] [PubMed]
    [Google Scholar]
  2. Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL et al. Carbapenemase-Producing Enterobacteriaceae in Europe: assessment by National experts from 38 countries, may 2015. Euro Surveill 2015; 20: pii=30062 [CrossRef]
    [Google Scholar]
  3. Becker L, Kaase M, Pfeifer Y, Fuchs S, Reuss A et al. Genome-based analysis of Carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008-2014. Antimicrob Resist Infect Control 2018; 7: 62 [CrossRef]
    [Google Scholar]
  4. Theuretzbacher U. Global antimicrobial resistance in gram-negative pathogens and clinical need. Curr Opin Microbiol 2017; 39: 106 112 [CrossRef]
    [Google Scholar]
  5. Lee HY, Chen CL, Wang SB, Su L-H, Chen S-H et al. Imipenem heteroresistance induced by imipenem in multidrug-resistant Acinetobacter baumannii: mechanism and clinical implications. Int J Antimicrob Agents 2011; 37: 302 308 [CrossRef]
    [Google Scholar]
  6. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-Lactamase-, ampC-, and carbapenemase-producing Enterobacteriaceae . Clin Microbiol Rev 2018; 31: e00079 17 [CrossRef]
    [Google Scholar]
  7. Pfennigwerth N. Bericht des Nationalen Referenzzentrums (NRZ) für gramnegative Krankenhauserreger – Zeitraum 1. Januar 2017 – 31. Dezember 2017. Epid Bull 2018; 28: 263 267
    [Google Scholar]
  8. Koch-Institut R. Bericht des Nationalen Referenzzentrums für gramnegative Krankenhauserreger, 2018. Epid Bull 31/2019
    [Google Scholar]
  9. Brolund A, Lagerqvist N, Byfors S, Struelens MJ, Monnet DL et al. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. Euro Surveill 2019; 24: [CrossRef] [PubMed]
    [Google Scholar]
  10. Kaase M, Pfennigwerth N. Bericht des Nationalen Referenzzentrums (NRZ) für gramnegative Krankenhauserreger Zeitraum 1. Januar 2015 bis 31. Dezember 2015. Epid Bull 2016; 25: 213 217
    [Google Scholar]
  11. Kaase M, Gatermann S. Bericht des Nationalen Referenzzentrums (NRZ) für gramnegative Krankenhauserreger Zeitraum 1. Januar 2014 bis 31. Dezember 2014. Epid Bull 2016; 2: 11 14
    [Google Scholar]
  12. Seifert H, Müller C, Stefanik D, Higgins PG, Miller A et al. In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii . J Antimicrob Chemother 2020; 75: 2616 2621 [CrossRef] [PubMed]
    [Google Scholar]
  13. Cisneros JM, Rosso-Fernández CM, Roca-Oporto C, De Pascale G, Jiménez-Jorge S et al. Colistin versus meropenem in the empirical treatment of ventilator-associated pneumonia (magic bullet study): an investigator-driven, open-label, randomized, noninferiority controlled trial. Crit Care 2019; 23: 383 [CrossRef] [PubMed]
    [Google Scholar]
  14. Cerezales M, Xanthopoulou K, Wille J, Bustamante Z, Seifert H et al. Acinetobacter baumannii analysis by core genome multi-locus sequence typing in two hospitals in Bolivia: endemicity of international clone 7 isolates (CC25). Int J Antimicrob Agents 2019; 53: 844 849 [CrossRef]
    [Google Scholar]
  15. Doyle D, Peirano G, Lascols C, Lloyd T, Church DL et al. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 2012; 50: 3877 3880 [CrossRef]
    [Google Scholar]
  16. Hernández-García M, Pérez-Viso B, Carmen Turrientes M, Díaz-Agero C, López-Fresneña N et al. Characterization of carbapenemase-producing Enterobacteriaceae from colonized patients in a university hospital in Madrid, Spain, during the R-GNOSIS project depicts increased clonal diversity over time with maintenance of high-risk clones. J Antimicrob Chemother 2018; 73: 3039 3043 [CrossRef] [PubMed]
    [Google Scholar]
  17. Wibberg D, Salto IP, Eikmeyer FG, Maus I, Winkler A et al. Complete Genome Sequencing of Acinetobacter baumannii Strain K50 Discloses the Large Conjugative Plasmid pK50a Encoding Carbapenemase OXA-23 and Extended-Spectrum β-Lactamase GES-11. Antimicrob Agents Chemother 2018; 62: e00212 00218 [CrossRef]
    [Google Scholar]
  18. Reyes JA, Melano R, Cárdenas PA, Trueba G. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales. Braz j infect dis 2020; 24: 231 238 [CrossRef]
    [Google Scholar]
  19. Baeza LL, Pfennigwerth N, Greissl C, Göttig S, Saleh A et al. Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect 2019; 25: 1286.e9 121286 [CrossRef] [PubMed]
    [Google Scholar]
  20. Girlich D, Bogaerts P, Bouchahrouf W, Bernabeu S, Langlois I et al. Evaluation of the Novodiag CarbaR+, a novel integrated sample to result platform for the multiplex qualitative detection of carbapenem and colistin resistance markers. Microbial Drug Resistance 2020 [CrossRef]
    [Google Scholar]
  21. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii . FEMS Microbiol Lett 2006; 258: 72 77 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001310
Loading
/content/journal/jmm/10.1099/jmm.0.001310
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error