1887

Abstract

isolates have been studied intensively for their beneficial traits. species function as probiotics in plants and fish, offering plants protection against microbes, nematodes and insects. In this review, we discuss the classification of isolates within four subspecies; the shared traits include the production of coloured antimicrobial phenazines, high sequence identity between housekeeping genes and similar cellular fatty acid composition. The direct antimicrobial, insecticidal and nematocidal effects of isolates are correlated with known metabolites. Other metabolites prime the plants for stress tolerance and participate in microbial cell signalling events and biofilm formation among other things. Formulations of isolates and their metabolites are currently being commercialized for agricultural use.

Funding
This study was supported by the:
  • Chonnam National University (Award 2018-3305)
    • Principle Award Recipient: Young Cheol Kim
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001157
2020-02-11
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/3/361.html?itemId=/content/journal/jmm/10.1099/jmm.0.001157&mimeType=html&fmt=ahah

References

  1. Biessy A, Novinscak A, Blom J, Leger G, Thomashow LS et al. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp. Environ Microbiol 2019; 21:437–455
    [Google Scholar]
  2. Deng P, Wang X, Baird SM, SE L. Complete genome of Pseudomonas chlororaphis strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato. Stand Genomic Sci 2015; 10:117
    [Google Scholar]
  3. Peng Q, Yi L, Zhou L, Peng Q. Draft genome sequence of the vanadium-leaching bacterium Pseudomonas chlororaphis strain L19. Genome Announc 2018; 6:e00966–17
    [Google Scholar]
  4. Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M et al. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 2015; 8:404–418
    [Google Scholar]
  5. Jain R, Pandey A. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol Res 2016; 190:63–71
    [Google Scholar]
  6. Al Baki MA, Jung JK, Maharjan R, Yi H, Ahn JJ et al. Application of insulin signaling to predict insect growth rate in Maruca vitrata (Lepidoptera: Crambidae). PLoS One 2018; 13:e0204935
    [Google Scholar]
  7. Palleroni NJ. The Pseudomonas story. Environ Microbiol 2010; 12:1377–1383
    [Google Scholar]
  8. Peix A, Valverde A, Rivas R, Igual JM, Ramirez-Bahena MH et al. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 2007; 57:1286–1290
    [Google Scholar]
  9. Burr SE, Gobeli S, Kuhnert P, Goldschmidt-Clermont E, Frey J. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish. Int J Syst Evol Microbiol 2010; 60:2753–2757
    [Google Scholar]
  10. van Rij ET, Wesselink M, Chin A, Bloemberg GV, Lugtenberg BJ. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 2004; 17:557–566
    [Google Scholar]
  11. Biessy A, Filion M. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics. Environ Microbiol 2018; 20:3905–3917
    [Google Scholar]
  12. Haynes WC, Rhodes LJ. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomon as chlororaphis . J Bacteriol 1962; 84:1080–1084
    [Google Scholar]
  13. Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 2017; 25:6149–6166
    [Google Scholar]
  14. Bauer JS, Hauck N, Christof L, Mehnaz S, Gust B et al. The systematic investigation of the quorum sensing system of the biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 unveils aurI to be a biosynthetic origin for 3-oxo-homoserine lactones. Plos One 2016; 11:e0167002
    [Google Scholar]
  15. Wang D, Lee SH, Seeve C, JM Y, Pierson LS 3rd et al. Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. MicrobiologyOpen 2013; 2:505–524
    [Google Scholar]
  16. JM Y, Wang D, Ries TR, Pierson LS 3rd, Pierson EA. An upstream sequence modulates phenazine production at the level of transcription and translation in the biological control strain Pseudomonas chlororaphis 30-84. PLoS One 2018; 13:e0193063
    [Google Scholar]
  17. Nandi M, Selin C, Brawerman G, Fernando WG, de Kievit TR. The global regulator ANR is essential for Pseudomonas chlororaphis strain PA23 biocontrol. Microbiology 2016; 162:2159–2169
    [Google Scholar]
  18. Shah N, Klaponski N, Selin C, Rudney R, Fernando WG et al. PtrA is functionally intertwined with GacS in regulating the biocontrol activity of Pseudomonas chlororaphis PA23. Front Microbiol 2016; 7:1512
    [Google Scholar]
  19. Wang D, JM Y, Dorosky RJ, Pierson LS 3rd, Pierson EA. The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30-84. PLoS One 2016; 11:e0148003
    [Google Scholar]
  20. Manuel J, Selin C, Fernando WG, de Kievit T. Stringent response mutants of Pseudomonas chlororaphis PA23 exhibit enhanced antifungal activity against Sclerotinia sclerotiorum in vitro . Microbiology 2012; 158:207–216
    [Google Scholar]
  21. Selin C, Fernando WG, de Kievit T. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23. Microbiology 2012; 158:896–907
    [Google Scholar]
  22. Thomashow LS, Weller DM. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici . J Bacteriol 1988; 170:3499–3508
    [Google Scholar]
  23. Duke KA, Becker MG, Girard IJ, Millar JL, Dilantha Fernando WG et al. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC Genomics 2017; 18:467
    [Google Scholar]
  24. Han SH, Lee SJ, Moon JH, Park KH, Yang KY et al. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant Microbe Interact 2006; 19:924–930
    [Google Scholar]
  25. Ma Z, GKH H, Ongena M, Höfte M. Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ Microbiol Rep 2016; 8:896–904
    [Google Scholar]
  26. Chin A, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 2000; 13:1340–1345
    [Google Scholar]
  27. Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R et al. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant Microbe Interact 2006; 19:418–428
    [Google Scholar]
  28. Selin C, Habibian R, Poritsanos N, Athukorala SN, Fernando D et al. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol 2010; 71:73–83
    [Google Scholar]
  29. Huang R, Feng Z, Chi X, Sun X, Lu Y et al. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum . Microbiol Res 2018; 215:55–64
    [Google Scholar]
  30. Park JY, SA O, Anderson AJ, Neiswender J, Kim JC et al. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 2011; 52:532–537
    [Google Scholar]
  31. Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS et al. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 2012; 78:804–812
    [Google Scholar]
  32. Nandi M, Selin C, Brassinga AK, Belmonte MF, Fernando WG et al. Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis Strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans . PLoS One 2015; 10:e0123184
    [Google Scholar]
  33. Zhai Y, Shao Z, Cai M, Zheng L, Li G et al. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from antarctic soil against Meloidogyne incognita . Front Microbiol 2018; 9:253
    [Google Scholar]
  34. Flury P, Vesga P, Pechy-Tarr M, Aellen N, Dennert F et al. Antimicrobial and insecticidal: Cyclic lipopeptides and hydrogencyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 2017; 8:100
    [Google Scholar]
  35. Kang BR, Anderson AJ, Kim YC. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla . Plant Pathol J 2018; 34:35–43
    [Google Scholar]
  36. Kang BR, Anderson AJ, Kim YC. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite. Can J Microbiol 2019; 65:185–190
    [Google Scholar]
  37. Hackenberg C, Muehlkchen A, Forge T, Vrain T. Pseudomonas chlororaphis strain Sm3, bacterial antagonist of Pratylenchus penetrans . J Nematol 2000; 32:183–189
    [Google Scholar]
  38. Nam HS, Anderson AJ, Kim YC. Biocontrol ffficacy of formulated Pseudomonas chlororaphis O6 against plant diseases and root-knot nematodes. Plant Pathol J 2018; 34:241–249
    [Google Scholar]
  39. Audrain B, Farag MA, Ryu CM, Ghigo JM. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 2015; 39:222–233
    [Google Scholar]
  40. Aziz M, Nadipalli RK, Xie X, Sun Y, Surowiec K et al. Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling. Front Plant Sci 2016; 7:458
    [Google Scholar]
  41. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B. mVOC: a database of microbial volatiles. Nucleic Acids Res 2014; 42:D744–748
    [Google Scholar]
  42. Liu XM, Zhang H. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci 2015; 6:774
    [Google Scholar]
  43. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y et al. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis . Planta 2007; 226:839–851
    [Google Scholar]
  44. Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W et al. Calling from distance: attraction of soil bacteria by plant root volatiles. Isme J 2018; 12:1252–1262
    [Google Scholar]
  45. Cheng X, Cordovez V, Etalo DW, van der Voort M, Raaijmakers JM. Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25. Front Plant Sci 2016; 7:1706 [View Article]
    [Google Scholar]
  46. Brilli F, Pollastri S, Raio A, Baraldi R, Neri L et al. Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. J Plant Physiol 2019; 232:82–93
    [Google Scholar]
  47. Cho SM, Kang BR, Han SH, Anderson AJ, Park JY et al. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana . Mol Plant Microbe Interact 2008; 21:1067–1075
    [Google Scholar]
  48. An R, Moe LA. Regulation of pyrroloquinoline quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440. Appl Environ Microbiol 2016; 82:4955–4964
    [Google Scholar]
  49. Ryu CM, Farag MA, CH H, Reddy MS, Wei HX et al. Bacterial volatiles promote growth in Arabidopsis . Proc Natl Acad Sci USA 2003; 100:4927–4932
    [Google Scholar]
  50. HS Y, Ahn YR, Song GC, Ghim SY, Lee S et al. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol 2016; 7:993
    [Google Scholar]
  51. Park JY, Kang BR, Ryu CM, Anderson AJ, Kim YC. Polyamine is a critical determinant of Pseudomonas chlororaphis O6 for GacS-dependent bacterial cell growth and biocontrol capacity. Mol Plant Pathol 2018; 19:1257–1266
    [Google Scholar]
  52. Zhang Y, Li T, Liu Y, Li X, Zhang C et al. Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. J Agric Food Chem 2019; 67:3702–3710
    [Google Scholar]
  53. Tagele SB, Lee HG, Kim SW, Lee YS. Phenazine and 1-undecene producing Pseudomonas chlororaphis subsp. aurantiaca strain KNU17Pc1 for growth promotion and disease suppression in Korean maize cultivars. J Microbiol Biotechnol 2019; 29:66–78
    [Google Scholar]
  54. McManus P, Hortin J, Anderson AJ, Jacobson AR, Britt DW et al. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on copper bioavailability and uptake. Environ Toxicol Chem 2018; 37:2619–2632
    [Google Scholar]
  55. Tian JH, Pourcher AM, Peu P. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett Appl Microbiol 2016; 63:30–37
    [Google Scholar]
  56. Moreno-Avitia F, Lozano L, Utrilla J, Bolivar F, Escalante A. Draft genome sequence of Pseudomonas chlororaphis ATCC 9446, a nonpathogenic bacterium with bioremediation and industrial potential. Genome Announc 2017; 5:
    [Google Scholar]
  57. Kim YC, Anderson AJ. Rhizosphere pseudomonads as probiotics improving plant health. Mol Plant Pathol 2018; 19:2349–2359
    [Google Scholar]
  58. Pechy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C et al. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens . Environ Microbiol 2008; 10:2368–2386
    [Google Scholar]
  59. Loper JE, Hassan KA, Mavrodi DV, Davis EW 2nd, Lim CK et al. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012; 8:e1002784
    [Google Scholar]
  60. Rangel LI, Henkels MD, Shaffer BT, Walker FL, Davis EW 2nd et al. Characterization of toxin complex gene clusters and insect toxicity of bacteria representing four subgroups of Pseudomonas fluorescens . PLoS One 2016; 11:e0161120
    [Google Scholar]
  61. Schellenberger U, Oral J, Rosen BA, Wei JZ, Zhu G et al. A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 2016; 354:634–637
    [Google Scholar]
  62. Spencer M, Ryu C-M, Yang K-Y, Kim YC, Kloepper JW et al. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol Mol Plant Pathol 2003; 63:27–34
    [Google Scholar]
  63. Dorosky RJ, Pierson LS 3rd, Pierson EA. Pseudomonas chlororaphis produces multiple R-tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities. Appl Environ Microbiol 2018; 84:e01230–18
    [Google Scholar]
  64. Dorosky RJ, JM Y, Pierson LS 3rd, Pierson EA. Pseudomonas chlororaphis produces two distinct R-tailocins that contribute to bacterial competition in biofilms and on roots. Appl Environ Microbiol 2017; 83:e00706–00717
    [Google Scholar]
  65. Ghequire MG, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas . FEMS Microbiol Rev 2014; 38:523–568
    [Google Scholar]
  66. Dimkpa CO, McLean JE, Britt DW, Anderson AJ. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology 2012; 6:635–642
    [Google Scholar]
  67. Jin XJ, Peng HS, HB H, Huang XQ, Wang W et al. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3. Sci Rep 2016; 6:27393
    [Google Scholar]
  68. Wang Y, Newman DK. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol 2008; 42:2380–2386
    [Google Scholar]
  69. Shahid I, Rizwan M, Baig DN, Saleem RS, Malik KA et al. Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. J Microbiol Biotechnol 2017; 27:480–491
    [Google Scholar]
  70. Arat S, Bullerjahn GS, Laubenbacher R. A network biology approach to denitrification in Pseudomonas aeruginosa . PLoS One 2015; 10:e0118235
    [Google Scholar]
  71. Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. Mol Plant 2015; 8:506–520
    [Google Scholar]
  72. Jacobson A, Doxey S, Potter M, Adams J, Britt D et al. Interactions between a plant probiotic and nanoparticles on plant responses related to drought tolerance. Industrial Biotechnology 2018; 14:148–156
    [Google Scholar]
  73. Wright M, Adams J, Yang K, McManus P, Jacobson A et al. A root-colonizing pseudomonad lessens stress responses in wheat imposed by CuO nanoparticles. PLoS One 2016; 11:e0164635
    [Google Scholar]
  74. Greenberg EP, Becker GE. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads. Can J Microbiol 1977; 23:903–907
    [Google Scholar]
  75. Haslun JA, Ostrom NE, Hegg EL, Ostrom PH. Estimation of isotope variation of N2O during denitrification by Pseudomonas aureofaciens and Pseudomonas chlororaphis: implications for N2O source apportionment. Biogeosciences 2018; 15:3873–3882
    [Google Scholar]
  76. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318–1322
    [Google Scholar]
  77. JM Y, Wang D, Pierson LS 3rd, Pierson EA. Effect of producing different phenazines on bacterial fitness and biological control in Pseudomonas chlororaphis 30-84. Plant Pathol J 2018; 34:44–58
    [Google Scholar]
  78. LeTourneau MK, Marshall MJ, Cliff JB, Bonsall RF, Dohnalkova AC et al. Phenazine-1-Carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces. Environ Microbiol 2018; 20:2178–2194
    [Google Scholar]
  79. Mavrodi DV, Mavrodi OV, Elbourne LDH, Tetu S, Bonsall RF et al. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front Plant Sci 2018; 9:345
    [Google Scholar]
  80. Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM. Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 2012; 78:3214–3220
    [Google Scholar]
  81. Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 2018; 9:1636
    [Google Scholar]
  82. Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 2018; 58:1009–1022
    [Google Scholar]
  83. Timmusk S, Kim SB, Nevo E, Daim AE I, Ek B et al. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front Microbiol 2015; 6:387
    [Google Scholar]
  84. Mahmoudi TR, JM Y, Liu S, Pierson LS 3rd, Pierson EA. Drought-stress tolerance in wheat seedlings conferred by phenazine-producing rhizobacteria. Front Microbiol 2019; 10:1590
    [Google Scholar]
  85. Yang K-Y, Doxey S, McLean JE, Britt D, Watson A et al. Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany 2017; 96:175–186
    [Google Scholar]
  86. Cho SM, Anderson AJ, Kim YC. Extracellular polymeric substances of Pseudomonas chlororaphis O6 induce systemic drought tolerance in plants. Res Plant Dis 2018; 24:242–247
    [Google Scholar]
  87. Couto N, Schooling SR, Dutcher JR, Barber J. Proteome profiles of outer membrane vesicles and extracellular matrix of Pseudomonas aeruginosa biofilms. J Proteome Res 2015; 14:4207–4222
    [Google Scholar]
  88. Gade A, Adams J, Britt DW, Shen FA, McLean JE et al. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis. Biometals 2016; 29:211–223
    [Google Scholar]
  89. Schertzer JW, Whiteley M. Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol 2013; 23:118–130
    [Google Scholar]
  90. Satarian F, Nejadsattari T, Vaziri F, Siadat SD. Comparative study of immune responses elicited by outer membrane vesicles of different Pseudomonas aeruginosa strains. Comp Immunol Microbiol Infect Dis 2019; 66:101328
    [Google Scholar]
  91. Choi HW, Klessig DF. Damps, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 2016; 16:232
    [Google Scholar]
  92. Li J, Yang Y, Dubern JF, Li H, Halliday N et al. Regulation of GacA in Pseudomonas chlororaphis strains shows a niche specificity. PLoS One 2015; 10:e0137553
    [Google Scholar]
  93. Calderon CE, Ramos C, de Vicente A, Cazorla FM. Comparative genomic analysis of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal compounds involved in biocontrol. Mol Plant Microbe Interact 2015; 28:249–260
    [Google Scholar]
  94. Calderon CE, Tienda S, Heredia-Ponce Z, Arrebola E, Carcamo-Oyarce G et al. The compound 2-hexyl, 5-propyl resorcinol has a key role in biofilm formation by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606. Front Microbiol 2019; 10:396
    [Google Scholar]
  95. Brameyer S, Kresovic D, Bode HB, Heermann R. Dialkylresorcinols as bacterial signaling molecules. Proc Natl Acad Sci USA 2015; 112:572–577
    [Google Scholar]
  96. Cimmino A, Evidente A, Mathieu V, Andolfi A, Lefranc F et al. Phenazines and cancer. Nat Prod Rep 2012; 29:487–501
    [Google Scholar]
  97. Krishnan HB, Kang BR, Hari Krishnan A, Kim KY, Kim YC. Rhizobium etli USDA9032 engineered to produce a phenazine antibiotic inhibits the growth of fungal pathogens but is impaired in symbiotic performance. Appl Environ Microbiol 2007; 73:327–330
    [Google Scholar]
  98. Anderson JA, Staley J, Challender M, Heuton J. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Res 2018; 27:103–113
    [Google Scholar]
  99. Carlson AB, Mathesius CA, Ballou S, Boeckman CJ, Gunderson TA et al. Safety assessment of coleopteran active IPD072Aa protein from Psuedomonas chlororaphis . Food Chem Toxicol 2019; 129:376–381
    [Google Scholar]
  100. Shen X, Wang Z, Huang X, Hu H, Wang W et al. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. BMC Genomics 2017; 18:715
    [Google Scholar]
  101. Shen X, Chen M, Hu H, Wang W, Peng H et al. Genome sequence of Pseudomonas chlororaphis GP72, a root-colonizing biocontrol strain. J Bacteriol 2012; 194:1269–1270 [View Article]
    [Google Scholar]
  102. Faccone D, Pasteran F, Albornoz E, Gonzalez L, Veliz O et al. Human infections due to Pseudomonas chlororaphis and Pseudomonas oleovorans harboring new blaVIM-2-borne integrons. Infect Genet Evol 2014; 28:276–277 [View Article]
    [Google Scholar]
  103. Monta S, Lazzaro T, Uong S, Place K, Iriarte A et al. Genomics helps to decipher the resistance mechanisms present in a Pseudomonas chlororaphis strain recovered in an HIV patient. New Microbes and New Infections 2018; 25:45–47 [View Article]
    [Google Scholar]
  104. Rosas SB. Pseudomonas chlororaphis subsp. aurantiaca SR1: isolated from rhizosphere and its return as inoculant. A review. International Biology Review 2017; 1:1–19
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001157
Loading
/content/journal/jmm/10.1099/jmm.0.001157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error