1887

Abstract

Laboratory research with commonly involves the prototype strain PAO1. There is continued concern that PAO1 sublines maintained and propagated in the same laboratory or different laboratories exhibit genetic and phenotypic variability that may affect the reproducibility and validity of research. Whole-genome sequencing and other research identified the locus as a mutational hotspot, but the explication of the diverse mutations present in the various sublines and consequences remained rather cursory. Here we present evidence that MexT sequence diversity is a predictor of PAO1 lineage integrity and define the protein’s prototype sequence.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001128
2019-12-20
2020-01-24
Loading full text...

Full text loading...

References

  1. Centers for Disease Control and Prevention 2019; Antibiotic resistance threats in the United States. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  2. World Health Organization 2018; Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  3. Holloway BW. Genetic recombination in Pseudomonas aeruginosa. Microbiology 1955;13: 572– 581 [CrossRef]
    [Google Scholar]
  4. Holloway BW. Genetics of Pseudomonas. Bacteriol Rev 1969;33: 419– 443
    [Google Scholar]
  5. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000;406: 959– 964 [CrossRef]
    [Google Scholar]
  6. Preston MJ, Fleiszig SM, Zaidi TS, Goldberg JB, Shortridge VD et al. Rapid and sensitive method for evaluating Pseudomonas aeruginosa virulence factors during corneal infections in mice. Infect Immun 1995;63: 3497– 3501
    [Google Scholar]
  7. Maseda H, Saito K, Nakajima A, Nakae T. Variation of the mexT gene, a regulator of the MexEF-OprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 2000;192: 107– 112 [CrossRef]
    [Google Scholar]
  8. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F et al. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 2010;192: 1113– 1121 [CrossRef]
    [Google Scholar]
  9. Sidorenko J, Jatsenko T, Kivisaar M. Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance. Mutat Res 2017;797-799: 26– 37 [CrossRef]
    [Google Scholar]
  10. Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW et al. Genomic and Phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol 2019;201: e00595– 18 [CrossRef]
    [Google Scholar]
  11. Holloway BW, Morgan AF. Genome organization in Pseudomonas. Annu Rev Microbiol 1986;40: 79– 105 [CrossRef]
    [Google Scholar]
  12. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 2006;103: 8487– 8492 [CrossRef]
    [Google Scholar]
  13. Olivas AD, Shogan BD, Valuckaite V, Zaborin A, Belogortseva N et al. Intestinal tissues induce an SNP mutation in Pseudomonas aeruginosa that enhances its virulence: possible role in anastomotic leak. PLoS One 2012;7: e44326 [CrossRef]
    [Google Scholar]
  14. Luong PM, Shogan BD, Zaborin A, Belogortseva N, Shrout JD et al. Emergence of the P2 phenotype in Pseudomonas aeruginosa PAO1 strains involves various mutations in mexT or mexF. J Bacteriol 2014;196: 504– 513 [CrossRef]
    [Google Scholar]
  15. Juarez P, Broutin I, Bordi C, Plésiat P, Llanes C. Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018;62: e02445– 17 [CrossRef]
    [Google Scholar]
  16. Koehler T, Epp SF, Curty LK, Pechere JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 1999;181: 6300– 6305
    [Google Scholar]
  17. Tian Z-X, Mac Aogáin M, O'Connor HF, Fargier E, Mooij MJ et al. MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. Microb Pathog 2009;47: 237– 241 [CrossRef]
    [Google Scholar]
  18. Tian Z-X, Fargier E, Mac Aogáin M, Adams C, Wang Y-P et al. Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa. Nucleic Acids Res 2009;37: 7546– 7559 [CrossRef]
    [Google Scholar]
  19. Jin Y, Yang H, Qiao M, Jin S. MexT regulates the type III secretion system through MexS and PtrC in Pseudomonas aeruginosa. J Bacteriol 2011;193: 399– 410 [CrossRef]
    [Google Scholar]
  20. Oshri RD, Zrihen KS, Shner I, Omer Bendori S, Eldar A. Selection for increased quorum-sensing cooperation in Pseudomonas aeruginosa through the shut-down of a drug resistance pump. Isme J 2018;12: 2458– 2469 [CrossRef]
    [Google Scholar]
  21. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci USA 2019;116: 7027– 7032 [CrossRef]
    [Google Scholar]
  22. Klockgether J, Miethke N, Kubesch P, Bohn Y-S, Brockhausen I et al. Intraclonal diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence. Environ Microbiol 2013;15: 191– 210 [CrossRef]
    [Google Scholar]
  23. Clark ST, Diaz Caballero J, Cheang M, Coburn B, Wang PW et al. Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis. Sci Rep 2015;5: 10932 [CrossRef]
    [Google Scholar]
  24. Kumar A, Schweizer HP. Evidence of MexT-independent overexpression of MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa in presence of metabolic stress. PLoS One 2011;6: e26520 [CrossRef]
    [Google Scholar]
  25. Kawalek A, Kotecka K, Modrzejewska M, Jagura-Burdzy G, Bartosik AA. Genome sequence of Pseudomonas aeruginosa PAO1161, a PAO1 derivative with the ICEFP2 integrative and conjugative element. bioRxiv 2018
    [Google Scholar]
  26. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2003;100: 14339– 14344 [CrossRef]
    [Google Scholar]
  27. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011;7: 539 [CrossRef]
    [Google Scholar]
  28. Madeira F, Park YM, Lee J, Buso N, Gur T et al. The EMBL-EBI search and sequence analysis tools Apis in 2019. Nucleic Acids Res 2019;47: W636– W641 [CrossRef]
    [Google Scholar]
  29. Dodd IB, Egan JB. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 1990;18: 5019– 5026 [CrossRef]
    [Google Scholar]
  30. Schroth MN, Cho JJ, Green SK, Kominos SD. Epidemiology of Pseudomonas aeruginosa in agricultural areas In VM Y. editor Pseudomonas aeruginosa: Ecological Aspects and Patient Colonization New York: Raven Press; 1977; pp 1– 29
    [Google Scholar]
  31. De Soyza A, Hall AJ, Mahenthiralingam E, Drevinek P, Kaca W et al. Developing an international Pseudomonas aeruginosa reference panel. Microbiologyopen 2013;2: 1010– 1023 [CrossRef]
    [Google Scholar]
  32. Rahme L, Stevens E, Wolfort S, Shao J, Tompkins R et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995;268: 1899– 1902 [CrossRef]
    [Google Scholar]
  33. Strom MS, Lory S. Cloning and expression of the pilin gene of Pseudomonas aeruginosa PAK in Escherichia coli. J Bacteriol 1986;165: 367– 372 [CrossRef]
    [Google Scholar]
  34. Salunkhe P, Smart CHM, Morgan JAW, Panagea S, Walshaw MJ et al. A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 2005;187: 4908– 4920 [CrossRef]
    [Google Scholar]
  35. Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 2008;154: 3609– 3623 [CrossRef]
    [Google Scholar]
  36. Colyer TE, Kredich NM. Residue threonine-149 of the Salmonella typhimurium CysB transcription activator: mutations causing constitutive expression of positively regulated genes of the cysteine regulon. Mol Microbiol 1994;13: 797– 805 [CrossRef]
    [Google Scholar]
  37. Colyer TE, Kredich NM. In vitro characterization of constitutive CysB proteins from Salmonella typhimurium. Mol Microbiol 1996;21: 247– 256 [CrossRef]
    [Google Scholar]
  38. Craven SH, Ezezika OC, Haddad S, Hall RA, Momany C et al. Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1. Mol Microbiol 2009;72: 881– 894 [CrossRef]
    [Google Scholar]
  39. Podnecky NL, Rhodes KA, Mima T, Drew HR, Chirakul S et al. Mechanisms of Resistance to Folate Pathway Inhibitors in Burkholderia pseudomallei : Deviation from the Norm. MBio 2017;8: e01357– 01317 [CrossRef]
    [Google Scholar]
  40. Rhodes KA, Somprasong N, Podnecky NL, Mima T, Chirakul S et al. Molecular determinants of Burkholderia pseudomallei BpeEF-OprC efflux pump expression. Microbiology 2018;164: 1156– 1167 [CrossRef]
    [Google Scholar]
  41. Latino L, Midoux C, Hauck Y, Vergnaud G, Pourcel C. Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa. Microbiology 2016;162: 748– 763 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001128
Loading
/content/journal/jmm/10.1099/jmm.0.001128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error