1887

Abstract

The development of infections is one of the main complications in orthopaedics, especially in the presence of implants for the osteosynthesis of compound fractures and joint prosthesis. Indeed, foreign materials and implants act as substrates for the adhesion and proliferation of bacterial strains able to produce biofilm, causing peri-implant osteomyelitis. The eradication of biofilm remains a great challenge for the host immune system, as well as for medical and surgical approaches, thus imposing the need for new prophylactic and/or therapeutic strategies in which animal models have an essential role. orthopaedic models have mainly been used to study the pathogenesis of infections, biofilm behaviour and the efficacy of antimicrobial strategies, to select diagnostic techniques and test the efficacy of novel materials or surface modifications to impede both the establishment of bone infections and the associated septic loosening of implants. Among several models of osteomyelitis and implant-related infections described in small rodents and large animals, the rabbit has been widely used as a reliable and reproducible model of orthopaedic infections. This review examines the relevance of rabbits for the development of clinically representative models by analysing the pros and cons of the different approaches published in the literature. This analysis will aid in increasing our knowledge concerning orthopaedic infections by using this species. This review will be a tool for researchers who need to approach pre-clinical studies in the field of bone infection and have to identify the most appropriate animal model to verify their scientific hypothesis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000952
2019-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/4/506.html?itemId=/content/journal/jmm/10.1099/jmm.0.000952&mimeType=html&fmt=ahah

References

  1. Pearce A, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007;13:1–10
    [Google Scholar]
  2. Fagundes D, Taha M. Choice´s criteria and current animals specimens. Acta Cir Bras 2004;19:59–65
    [Google Scholar]
  3. Burkholder T, Linton G, Hoyt RJ. The rabbit as an experimental model In: Suckow MA, Stevens KA, Wilson RP. (editors) The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents 2012
    [Google Scholar]
  4. Wancket LM. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet Pathol 2015;52:842–850
    [Google Scholar]
  5. Masoud I, Shapiro F, Kent R, Moses A. A longitudinal study of the growth of the New Zealand white rabbit: cumulative and biweekly incremental growth rates for body length, body weight, femoral length, and tibial length. J Orthop Res 1986;4:221–231
    [Google Scholar]
  6. Chai H, Guo L, Wang X, Fu Y, Guan J et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J Mater Sci Mater Med 2011;22:2525–2535
    [Google Scholar]
  7. Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J 2012;9:111–118
    [Google Scholar]
  8. Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng 1998;8:1–9
    [Google Scholar]
  9. Mäkitaipale J, Sievänen H, Laitinen-Vapaavuori O. Tibial bone density, cross-sectional geometry and strength in Finnish PET rabbits: a peripheral quantitative computed tomography study. Vet Rec 2018;183:382 [CrossRef]
    [Google Scholar]
  10. Graur D, Duret L, Gouy M. Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 1996;379:333–335
    [Google Scholar]
  11. Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y et al. The wide utility of rabbits as models of human diseases. Exp Mol Med 2018;50:66
    [Google Scholar]
  12. Löffler B, Hussain M, Grundmeier M, Brück M, Holzinger D et al. Staphylococcus aureus Panton-Valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 2010;6:e1000715
    [Google Scholar]
  13. Crémieux AC, Dumitrescu O, Lina G, Vallee C, Côté JF et al. Panton-Valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One 2009;4:3–10
    [Google Scholar]
  14. Saleh-Mghir A, Dumitrescu O, Dinh A, Boutrad Y, Massias L et al. Ceftobiprole efficacy in vitro against Panton-Valentine leukocidin production and in vivo against community-associated methicillin-resistant Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother 2012;56:6291–6297
    [Google Scholar]
  15. Gatin L, Saleh-Mghir A, Massin P, Crémieux AC. Critical analysis of experimental models of periprosthetic joint infection. Orthop Traumatol Surg Res 2015;101:851–855
    [Google Scholar]
  16. Morris TH. Antibiotic therapeutics in laboratory animals. Lab Anim 1995;29:16–36
    [Google Scholar]
  17. An YH, Kang QK, Arciola CR. Animal models of osteomyelitis. Int J Artif Organs 2006;29:407–420
    [Google Scholar]
  18. Mariani BD, Martin DS, Chen AF, Yagi H, Lin SS et al. Polymerase chain reaction molecular diagnostic technology for monitoring chronic osteomyelitis. J Exp Orthop 2014;1:9
    [Google Scholar]
  19. Scheman L, Janota M, Lewin P. The production of experimental osteomyelitis: preliminary report. J Am Med Assoc 1941;117:1525–1529
    [Google Scholar]
  20. Norden CW, Kennedy E. Experimental osteomyelitis. I. A description of the model. J Infect Dis 1970;122:410–418 [CrossRef]
    [Google Scholar]
  21. Ding H, Zhao CJ, Cui X, Gu YF, Jia WT et al. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLoS One 2014;9:e85472–85479 [CrossRef]
    [Google Scholar]
  22. Jia WT, Zhang CQ, Wang JQ, Feng Y, Ai ZS. The prophylactic effects of platelet-leucocyte gel in osteomyelitis: an experimental study in a rabbit model. J Bone Joint Surg Br 2010;92:304–310
    [Google Scholar]
  23. Jia WT, Luo SH, Zhang CQ, Wang JQ. In vitro and in vivo efficacies of teicoplanin-loaded calcium sulfate for treatment of chronic methicillin-resistant Staphylococcus aureus osteomyelitis. Antimicrob Agents Chemother 2010;54:170–176
    [Google Scholar]
  24. Jia WT, Zhang X, Luo SH, Liu X, Huang WH et al. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater 2010;6:812–819
    [Google Scholar]
  25. Liu X, Xie Z, Zhang C, Pan H, Rahaman MN et al. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J Mater Sci Mater Med 2010;21:575–582
    [Google Scholar]
  26. Hui T, Yongqing X, Tiane Z, Gang L, Yonggang Y et al. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch Orthop Trauma Surg 2009;129:1301–1308
    [Google Scholar]
  27. Jiang JL, Li YF, Fang TL, Zhou J, Li XL et al. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm Res 2012;61:207–215 [CrossRef]
    [Google Scholar]
  28. Shi P, Zuo Y, Li X, Zou Q, Liu H et al. Gentamicin-impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy. J Biomed Mater Res A 2010;93:1020–1031 [CrossRef]
    [Google Scholar]
  29. Wang Q, Chen C, Liu W, He X, Zhou N et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep 2017;7:41808
    [Google Scholar]
  30. Xing J, Hou T, Luobu B, Luo F, Chen Q et al. Anti-infection tissue engineering construct treating osteomyelitis in rabbit tibia. Tissue Eng Part A 2013;19:255–263 [CrossRef]
    [Google Scholar]
  31. Yan L, Jiang DM, Cao ZD, Wu J, Wang X et al. Treatment of Staphylococcus aureus -induced chronic osteomyelitis with bone-like hydroxyapatite / poly amino acid loaded with rifapentine microspheres. Drug Des Devel Ther 2015;9:3665–3676
    [Google Scholar]
  32. Yin LY, Calhoun JH, Thomas JK, Shapiro S, Schmitt-Hoffmann A. Efficacies of ceftobiprole medocaril and comparators in a rabbit model of osteomyelitis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2008;52:1618–1622
    [Google Scholar]
  33. Zhang Y, Liang RJ, Xu JJ, Shen LF, Gao JQ et al. Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly(trimethylene carbonate) localized drug delivery system. Int J Nanomedicine 2017;12:1201–1214 [CrossRef]
    [Google Scholar]
  34. Zhou J, Zhou XG, Wang JW, Zhou H, Dong J. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57
    [Google Scholar]
  35. Cui X, Zhao C, Gu Y, Li L, Wang H et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. J Mater Sci Mater Med 2014;25:733–745
    [Google Scholar]
  36. Jia WT, Fu Q, Huang WH, Zhang CQ, Rahaman MN. Comparison of borate bioactive glass and calcium sulfate as implants for the local delivery of teicoplanin in the treatment of methicillin-resistant Staphylococcus aureus-induced osteomyelitis in a rabbit model. Antimicrob Agents Chemother 2015;59:7571–7580
    [Google Scholar]
  37. Kundu B, Nandi SK, Dasgupta S, Datta S, Mukherjee P et al. Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial. J Mater Sci Mater Med 2011;22:705–720
    [Google Scholar]
  38. Xie Z, Liu X, Jia W, Zhang C, Huang W et al. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J Control Release 2009;139:118–126
    [Google Scholar]
  39. Xie Z, Cui X, Zhao C, Huang W, Wang J et al. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model. Antimicrob Agents Chemother 2013;57:3293–3298
    [Google Scholar]
  40. Brady RA, O'May GA, Leid JG, Prior ML, Costerton JW et al. Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infect Immun 2011;79:1797–1803
    [Google Scholar]
  41. Lu M, Liao J, Dong J, Wu J, Qiu H et al. An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci Rep 2016;6:39174 [CrossRef]
    [Google Scholar]
  42. Yin LY, Manring MM, Calhoun JH. A rabbit osteomyelitis model to simulate multibacterial war wound infections. Mil Med 2013;178:696–700 [CrossRef]
    [Google Scholar]
  43. Li GY, Yin JM, Ding H, Jia WT, Zhang CQ. Efficacy of leukocyte- and platelet-rich plasma gel (L-PRP gel) in treating osteomyelitis in a rabbit model. J Orthop Res 2013;31:949–956 [CrossRef]
    [Google Scholar]
  44. Achermann Y, Tran B, Kang M, Harro JM, Shirtliff ME. Immunoproteomic identification of in vivo-produced Propionibacterium acnes proteins in a rabbit biofilm infection model. Clin Vaccine Immunol 2015;22:467–476
    [Google Scholar]
  45. Gollwitzer H, Roessner M, Langer R, Gloeck T, Diehl P et al. Safety and effectiveness of extracorporeal shockwave therapy: results of a rabbit model of chronic osteomyelitis. Ultrasound Med Biol 2009;35:595–602 [CrossRef]
    [Google Scholar]
  46. Zeng J, Ren L, Yuan Y, Wang Y, Zhao J et al. Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus. J Mater Sci Mater Med 2013;24:2405–2416 [CrossRef]
    [Google Scholar]
  47. Li Y, Liu L, Wan P, Zhai Z, Mao Z et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials 2016;106:250–263 [CrossRef]
    [Google Scholar]
  48. Shou D, Zhang Y, Shen L, Zheng R, Huang X et al. Flavonoids of herba Epimedii enhances bone repair in a rabbit model of chronic osteomyelitis during post-infection treatment and stimulates osteoblast proliferation in vitro. Phytother Res 2017;31:330–339 [CrossRef]
    [Google Scholar]
  49. Zhang X, Ma YF, Wang L, Jiang N, Qin CH et al. A rabbit model of implant-related osteomyelitis inoculated with biofilm after open femoral fracture. Exp Ther Med 2017;14:4995–5001 [CrossRef]
    [Google Scholar]
  50. Davido B, Saleh-Mghir A, Laurent F, Danel C, Couzon F et al. Phenol-soluble modulins contribute to early sepsis dissemination not late local USA300-osteomyelitis severity in rabbits. PLoS One 2016;11:1–12
    [Google Scholar]
  51. Yin LY, Calhoun JH, Thomas TS, Wirtz ED. Efficacy of telavancin in the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis: studies with a rabbit model. J Antimicrob Chemother 2009;63:357–360
    [Google Scholar]
  52. Chung MF, Chia WT, Liu HY, Hsiao CW, Hsiao HC et al. Inflammation-induced drug release by using a pH-responsive Gas-Generating Hollow-Microsphere system for the treatment of osteomyelitis. Adv Healthc Mater 2014;3:1854–1861
    [Google Scholar]
  53. Zhang X, Jia W, Gu Y, Xiao W, Liu X et al. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 2010;31:5865–5874 [CrossRef]
    [Google Scholar]
  54. Bhattacharya R, Kundu B, Nandi SK, Basu D. Systematic approach to treat chronic osteomyelitis through localized drug delivery system: bench to bed side. Mater Sci Eng C 2013;33:3986–3993
    [Google Scholar]
  55. Wellisz T, An YH, Wen X, Kang Q, Hill CM et al. Infection rates and healing using bone wax and a soluble polymer material. Clin Orthop Relat Res 2008;466:481–486 [CrossRef]
    [Google Scholar]
  56. Kanellakopoulou K, Thivaios GC, Kolia M, Dontas I, Nakopoulou L et al. Local treatment of experimental Pseudomonas aeruginosa osteomyelitis with a biodegradable dilactide polymer releasing ciprofloxacin. Antimicrob Agents Chemother 2008;52:2335–2339
    [Google Scholar]
  57. Zahar A, Kocsis G, Citak M, Puskás G, Domahidy M et al. Use of antibiotic-impregnated bone grafts in a rabbit osteomyelitis model. Technol Heal Care 2017;25:929–938
    [Google Scholar]
  58. Mistry S, Roy S, Maitra NJ, Kundu B, Chanda A et al. A novel, multi-barrier, drug eluting calcium sulfate/biphasic calcium phosphate biodegradable composite bone cement for treatment of experimental MRSA osteomyelitis in rabbit model. J Control Release 2016;239:169–181
    [Google Scholar]
  59. Yaprakci V, Erdemli O, Kayabolen A, Tezcaner A, Bozkurt F et al. In vitro/in vivo comparison of cefuroxime release from poly(ε-caprolactone)-calcium sulfate implants for osteomyelitis treatment. Biotechnol Appl Biochem 2013;60:603–616 [CrossRef]
    [Google Scholar]
  60. Peng KT, Chen CF, Chu IM, Li YM, Hsu WH et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 2010;31:5227–5236 [CrossRef]
    [Google Scholar]
  61. Giavaresi G, Borsari V, Fini M, Giardino R, Sambri V et al. Preliminary investigations on a new gentamicin and vancomycin-coated PMMA nail for the treatment of bone and intramedullary infections: an experimental study in the rabbit. J Orthop Res 2008;26:785–792
    [Google Scholar]
  62. Giavaresi G, Bertazzoni Minelli E, Sartori M, Benini A, Della Bora T et al. Microbiological and pharmacological tests on new antibiotic-loaded PMMA-based composites for the treatment of osteomyelitis. J Orthop Res 2012;30:348–355
    [Google Scholar]
  63. Giavaresi G, Bertazzoni Minelli E, Sartori M, Benini A, Parrilli A et al. New PMMA-based composites for preparing spacer devices in prosthetic infections. J Mater Sci Mater Med 2012;23:1247–1257
    [Google Scholar]
  64. Alvarez H, Castro C, Moujir L, Perera A, Delgado A et al. Efficacy of ciprofloxacin implants in treating experimental osteomyelitis. J Biomed Mater Res B Appl Biomater 2008;85:93–104 [CrossRef]
    [Google Scholar]
  65. Kishor C, Mishra RR, Saraf SK, Kumar M, Srivastav AK et al. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res 2016;143:87–94
    [Google Scholar]
  66. Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N et al. Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res 2010;27:1659–1676
    [Google Scholar]
  67. Gaudin A, Amador Del Valle G, Hamel A, Le Mabecque V, Miegeville AF et al. A new experimental model of acute osteomyelitis due to methicillin-resistant Staphylococcus aureus in rabbit. Lett Appl Microbiol 2011;52:253–257 [CrossRef]
    [Google Scholar]
  68. Jacqueline C, Amador G, Caillon J, Le Mabecque V, Batard E et al. Efficacy of the new cephalosporin ceftaroline in the treatment of experimental methicillin-resistant Staphylococcus aureus acute osteomyelitis. J Antimicrob Chemother 2010;65:1749–1752 [CrossRef]
    [Google Scholar]
  69. Amador G, Gautier H, Le Mabecque V, Miegeville AF, Potel G et al. In vivo assessment of the antimicrobial activity of a calcium-deficient apatite vancomycin drug delivery system in a methicillin-resistant Staphylococcus aureus rabbit osteomyelitis experimental model. Antimicrob Agents Chemother 2010;54:950–952 [CrossRef]
    [Google Scholar]
  70. Lefebvre M, Jacqueline C, Amador G, Le Mabecque V, Miegeville A et al. Efficacy of daptomycin combined with rifampicin for the treatment of experimental meticillin-resistant Staphylococcus aureus (MRSA) acute osteomyelitis. Int J Antimicrob Agents 2010;36:542–544 [CrossRef]
    [Google Scholar]
  71. Saraf S, Yadav A, Nagwani S, Sen M. Decal bone matrix as a local antibiotic delivery vehicle in a MRSA-infected bone model: an experimental study. Indian J Orthop 2010;44:246
    [Google Scholar]
  72. Li D, Lv P, Fan L, Huang Y, Yang F et al. The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections. Biomater Sci 2017;5:2337–2346 [CrossRef]
    [Google Scholar]
  73. Brooks BD, Sinclair KD, Grainger DW, Brooks AE. A resorbable Antibiotic-eluting polymer composite bone void filler for perioperative infection prevention in a rabbit radial defect model. PLoS One 2015;10:1–19
    [Google Scholar]
  74. Gao J, Huang G, Liu G, Liu Y, Chen Q et al. A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. J Biomater Appl 2016;31:241–249
    [Google Scholar]
  75. Beenken KE, Smith JK, Skinner RA, Mclaren SG, Bellamy W et al. Chitosan coating to enhance the therapeutic efficacy of calcium sulfate-based antibiotic therapy in the treatment of chronic osteomyelitis. J Biomater Appl 2014;29:514–523
    [Google Scholar]
  76. Beenken KE, Bradney L, Bellamy W, Skinner RA, McLaren SG et al. Use of xylitol to enhance the therapeutic efficacy of polymethylmethacrylate-based antibiotic therapy in treatment of chronic osteomyelitis. Antimicrob Agents Chemother 2012;56:5839–5844
    [Google Scholar]
  77. Brown TLY, Spencer HJ, Beenken KE, Alpe TL, Bartel TB et al. Evaluation of dynamic [18F]-FDG-PET imaging for the detection of acute post-surgical bone infection. PLoS One 2012;7:1–8
    [Google Scholar]
  78. Kanellakopoulou K, Galanopoulos I, Soranoglou V, Tsaganos T, Tziortzioti V et al. Treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with a synthetic carrier of calcium sulphate (Stimulan) releasing moxifloxacin. Int J Antimicrob Agents 2009;33:354–359 [CrossRef]
    [Google Scholar]
  79. Johnson P, Fromm D. Effects of bone wax on bacterial clearance. Surgery 1981;89:206–209
    [Google Scholar]
  80. Patel M, Rojavin Y, Jamali AA, Wasielewski SJ, Salgado CJ. Animal models for the study of osteomyelitis. Semin Plast Surg 2009;23:148–154
    [Google Scholar]
  81. Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial Biofilm-Related infections. Pathogens 2013;2:288–356
    [Google Scholar]
  82. Andriole V, Nagel D, Southwick W. A paradigm for human chronic osteomyelitis. J Bone Joint Surg 1973;55:1511–1515
    [Google Scholar]
  83. Martin VT, Wang L, Zeng R, You D, Zhang X et al. Carboxymethyl chitosan–zinc coating for prevention of pin tract infection: an animal model. J Orthop Surg 2018;26:230949901774998
    [Google Scholar]
  84. Qu H, Knabe C, Burke M, Radin S, Garino J et al. Bactericidal Micron-Thin Sol–Gel films prevent pin tract and periprosthetic infection. Mil Med 2014;179:29–33
    [Google Scholar]
  85. Qu H, Knabe C, Radin S, Garino J, Ducheyne P. Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection. Biomaterials 2015;62:95–105
    [Google Scholar]
  86. Chou TGR, Petti CA, Szakacs J, Bloebaum RD. Evaluating antimicrobials and implant materials for infection prevention around transcutaneous osseointegrated implants in a rabbit model. J Biomed Mater Res A 2010;92:942–952 [CrossRef]
    [Google Scholar]
  87. Odekerken JCE, Arts JJ, Surtel DA, Walenkamp GH, Welting TJ. A rabbit osteomyelitis model for the longitudinal assessment of early post-operative implant infections. J Orthop Surg Res 2013;8:1–13
    [Google Scholar]
  88. Odekerken JCE, Brans BT, Welting TJM, Walenkamp GHIM. 18 F-FDG microPET imaging differentiates between septic and aseptic wound healing after orthopedic implant placement. Acta Orthop 2014;85:305–313 [CrossRef]
    [Google Scholar]
  89. Odekerken JCE, Walenkamp GH, Brans BT, Welting TJ, Arts JJ. The longitudinal assessment of osteomyelitis development by molecular imaging in a rabbit model. Biomed Res Int 2014;2014:424652 [CrossRef]
    [Google Scholar]
  90. Cao H, Qin H, Zhao Y, Jin G, Lu T et al. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus. Sci Rep 2016;6:1–10
    [Google Scholar]
  91. Liu D, He C, Liu Z, Xu W. Corrigendum to: gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Int J Nanomedicine 2017;12:6219
    [Google Scholar]
  92. De Breij A, Riool M, Kwakman PH, de Boer L, Cordfunke RA et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release 2016;222:1–8
    [Google Scholar]
  93. Yang CC, Lin CC, Liao JW, Yen SK. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C 2013;33:2203–2212
    [Google Scholar]
  94. Kose N, Otuzbir A, Pekşen C, Kiremitçi A, Doğan A. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance basic research. Clin Orthop Relat Res 2013;471:2532–2539
    [Google Scholar]
  95. Kose N, Çaylak R, Pekşen C, Kiremitçi A, Burukoglu D et al. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: in vivo study. Injury 2016;47:320–324
    [Google Scholar]
  96. Ravanetti F, Chiesa R, Ossiprandi MC, Gazza F, Farina V et al. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties. J Mater Sci Mater Med 2016;27:1–15
    [Google Scholar]
  97. Metsemakers WJ, Emanuel N, Cohen O, Reichart M, Potapova I et al. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus. J Control Release 2015;209:47–56
    [Google Scholar]
  98. Giavaresi G, Meani E, Sartori M, Ferrari A, Bellini D et al. Efficacy of antibacterial-loaded coating in an in vivo model of acutely highly contaminated implant. Int Orthop 2014;38:1505–1512
    [Google Scholar]
  99. Neut D, Dijkstra RJ, Thompson JI, Kavanagh C, van der Mei HC et al. A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses. Eur Cells Mater 2015;29:42–56
    [Google Scholar]
  100. Chatziioannou S, Papamichos O, Gamaletsou MN, Georgakopoulos A, Kostomitsopoulos NG et al. 18-Fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography scan for monitoring the therapeutic response in experimental Staphylococcus aureus foreign-body osteomyelitis. J Orthop Surg Res 2015;10:1–10
    [Google Scholar]
  101. Soranoglou V, Galanopoulos I, Giamarellos-Bourboulis EJ, Papalois A, Giannitsioti E et al. Efficacy of intramuscular moxifloxacin in the treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2017;50:186–190
    [Google Scholar]
  102. Efstathopoulos N, Giamarellos-Bourboulis E, Kanellakopoulou K, Lazarettos I, Giannoudis P et al. Treatment of experimental osteomyelitis by methicillin resistant Staphylococcus aureus with bone cement system releasing grepafloxacin. Injury 2008;39:1384–1390
    [Google Scholar]
  103. Tsiolis P, Giamarellos-Bourboulis EJ, Mavrogenis AF, Savvidou O, Lallos SN et al. Experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus treated with a Polylactide carrier releasing linezolid. Surg Infect 2011;12:131–135
    [Google Scholar]
  104. Nandi SK, Shivaram A, Bose S, Bandyopadhyay A. Silver nanoparticle deposited implants to treat osteomyelitis. J Biomed Mater Res B Appl Biomater 2018;106:1073–1083 [CrossRef]
    [Google Scholar]
  105. Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN et al. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother 2009;53:4064–4068
    [Google Scholar]
  106. Gahukamble AD, McDowell A, Post V, Salavarrieta Varela J, Rochford ET et al. Propionibacterium acnes and Staphylococcus lugdunensis cause pyogenic osteomyelitis in an intramedullary nail model in rabbits. J Clin Microbiol 2014;52:1595–1606
    [Google Scholar]
  107. Surdu-Bob CC, Coman C, Barbuceanu F, Turcu D, Bercaru N et al. The influence of foreign body surface area on the outcome of chronic osteomyelitis. Med Eng Phys 2016;38:870–876 [CrossRef]
    [Google Scholar]
  108. Jennings JA, Beenken KE, Skinner RA, Meeker DG, Smeltzer MS et al. Antibiotic-loaded phosphatidylcholine inhibits staphylococcal bone infection. World J Orthop 2016;7:467–474 [CrossRef]
    [Google Scholar]
  109. Zhang Y, Liu X, Li Z, Zhu S, Yuan X et al. Nano Ag/ZnO-incorporated hydroxyapatite composite coatings: highly effective infection prevention and excellent osteointegration. ACS Appl Mater Interfaces 2018;10:1266–1277 [CrossRef]
    [Google Scholar]
  110. Ambrose CG, Clyburn TA, Mika J, Gogola GR, Kaplan HB et al. Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections. J Bone Joint Surg 2014;96:128–134 [CrossRef]
    [Google Scholar]
  111. Moojen DJF, Vogely HC, Fleer A, Verbout AJ, Castelein RM et al. No efficacy of silver bone cement in the prevention of methicillin-sensitive Staphylococcal infections in a rabbit contaminated implant bed model. J Orthop Res 2009;27:1002–1007 [CrossRef]
    [Google Scholar]
  112. Tan HL, Ao HY, Ma R, Lin WT, Tang TT. In vivo effect of quaternized chitosan-loaded polymethylmethacrylate bone cement on methicillin-resistant Staphylococcus epidermidis infection of the tibial metaphysis in a rabbit model. Antimicrob Agents Chemother 2014;58:6016–6023 [CrossRef]
    [Google Scholar]
  113. Lin T, Cai XZ, Shi MM, Ying ZM, Hu B et al. In vitro and in vivo evaluation of vancomycin-loaded PMMA cement in combination with ultrasound and microbubbles-mediated ultrasound. Biomed Res Int 2015;2015:309739 [CrossRef]
    [Google Scholar]
  114. Lankinen P, Lehtimäki K, Hakanen AJ, Roivainen A, Aro HT. A comparative 18F-FDG PET/CT imaging of experimental Staphylococcus aureus osteomyelitis and Staphylococcus epidermidis foreign-body-associated infection in the rabbit tibia. EJNMMI Res 2012;2:41–10 [CrossRef]
    [Google Scholar]
  115. Ueng SWN, Lin SS, Wang IC, Yang CY, Cheng RC et al. Efficacy of vancomycin-releasing biodegradable poly(lactide-co-glycolide) antibiotics beads for treatment of experimental bone infection due to Staphylococcus aureus. J Orthop Surg Res 2016;11:1–9 [CrossRef]
    [Google Scholar]
  116. Emanuel N, Rosenfeld Y, Cohen O, Applbaum YH, Segal D et al. A lipid-and-polymer-based novel local drug delivery system–BonyPid™: from physicochemical aspects to therapy of bacterially infected bones. J Control Release 2012;160:353–361 [CrossRef]
    [Google Scholar]
  117. Huang JG, Pang L, Chen ZR, Tan XP. Dual-delivery of vancomycin and icariin from an injectable calcium phosphate cement-release system for controlling infection and improving bone healing. Mol Med Rep 2013;8:1221–1227 [CrossRef]
    [Google Scholar]
  118. Alt V, Bitschnau A, Osterling J, Sewing A, Meyer C et al. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials 2006;27:4627–4634
    [Google Scholar]
  119. Korean Society for Chemotherapy Korean Society of Infectious Diseases Korean Orthopaedic Association Clinical guidelines for the antimicrobial treatment of bone and joint infections in Korea. Infect Chemother 2014;46:125–138
    [Google Scholar]
  120. Belmatoug N, Crémieux AC, Bleton R, Volk A, Saleh-Mghir A et al. A new model of experimental prosthetic joint infection due to methicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magnetic resonance imaging characterization. J Infect Dis 1996;174:414–417 [CrossRef]
    [Google Scholar]
  121. Muller-Serieys C, Saleh Mghir A, Massias L, Fantin B. Bactericidal activity of the combination of levofloxacin with rifampin in experimental prosthetic knee infection in rabbits due to methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 2009;53:2145–2148 [CrossRef]
    [Google Scholar]
  122. Gatin L, Saleh-Mghir A, Tasse J, Ghout I, Laurent F et al. Ceftaroline-Fosamil efficacy against methicillin-resistant Staphylococcus aureus in a rabbit prosthetic joint infection model. Antimicrob Agents Chemother 2014;58:6496–6500 [CrossRef]
    [Google Scholar]
  123. Saleh-Mghir A, Muller-Serieys C, Dinh A, Massias L, Crémieux AC. Adjunctive rifampin is crucial to optimizing daptomycin efficacy against rabbit prosthetic joint infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011;55:4589–4593 [CrossRef]
    [Google Scholar]
  124. Tang C, Wang F, Hou Y, Lu S, Tian W et al. Technetium-99m-labeled annexin V imaging for detecting prosthetic joint infection in a rabbit model. J Biomed Res 2015;29:224–231
    [Google Scholar]
  125. Mauerer A, Stenglein S, Schulz-Drost S, Schoerner C, Taylor D et al. Antibacterial effect of a 4x Cu-TiO2 coating simulating acute periprosthetic infection—An animal model. Molecules 2017;22:1042–14 [CrossRef]
    [Google Scholar]
  126. Zhai H, Pan J, Pang E, Bai B. Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One 2014;9:e102760 [CrossRef]
    [Google Scholar]
  127. Schroeder K, Simank HG, Lorenz H, Swoboda S, Geiss HK et al. Implant stability in the treatment of MRSA bone implant infections with linezolid versus vancomycin in a rabbit model. J Orthop Res 2012;30:190–195 [CrossRef]
    [Google Scholar]
  128. Helbig L, Simank HG, Lorenz H, Putz C, Wölfl C et al. Establishment of a new methicillin resistant Staphylococcus aureus animal model of osteomyelitis. Int Orthop 2014;38:891–897 [CrossRef]
    [Google Scholar]
  129. Moskowitz JS, Blaisse MR, Samuel RE, Hsu HP, Harris MB et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials 2010;31:6019–6030 [CrossRef]
    [Google Scholar]
  130. Hamel A, Caillon J, Jacqueline C, Rogez JM, Potel G. Internal device decreases antibiotic's efficacy on experimental osteomyelitis. J Child Orthop 2008;2:239–243 [CrossRef]
    [Google Scholar]
  131. Zhang L, Yan J, Yin Z, Tang C, Guo Y et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomedicine 2014;9:3027–3036
    [Google Scholar]
  132. Arens D, Wilke M, Calabro L, Hackl S, Zeiter S et al. A rabbit humerus model of plating and nailing osteosynthesis with and without Staphylococcus aureus osteomyelitis. Eur Cells Mater 2015;30:148–162 [CrossRef]
    [Google Scholar]
  133. Fei J, Yu HJ, Pan CJ, Zhao CH, Zhou YG et al. Efficacy of a Norvancomycin-Loaded, PDLLA-Coated plate in preventing early infection of rabbit tibia fracture. Orthopedics 2010;33: [CrossRef]
    [Google Scholar]
  134. ter Boo GJA, Arens D, Metsemakers WJ, Zeiter S, Richards RG et al. Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomater 2016;43:185–194 [CrossRef]
    [Google Scholar]
  135. Xie ZP, Zhang CQ, Yi CQ, Qiu JJ, Wang JQ et al. In vivo study effect of particulate Bioglass in the prevention of infection in open fracture fixation. J Biomed Mater Res B Appl Biomater 2009;90:195–201 [CrossRef]
    [Google Scholar]
  136. Overstreet D, McLaren A, Calara F, Vernon B, McLemore R. Local gentamicin delivery from resorbable viscous hydrogels is therapeutically effective. Clin Orthop Relat Res 2015;473:337–347 [CrossRef]
    [Google Scholar]
  137. Lemos Azi M, Kfuri Junior M, Martinez R, Salata LA, Paccola CA. Development of an experimental model of infected bone void in the ulna of rabbits. Acta Ortop Bras 2012;20:136–138
    [Google Scholar]
  138. Lovati AB, Romanò CL, Bottagisio M, Monti L, De Vecchi E et al. Modeling Staphylococcus epidermidis-induced non-unions: subclinical and clinical evidence in rats. PLoS One 2016;11:e0147447 [CrossRef]
    [Google Scholar]
  139. Lovati AB, Bottagisio M, De Vecchi E, Gallazzi E, Drago L. Animal models of implant-related low-grade infections. A twenty-year review. Adv Exp Med Biol 2017;971:29–50
    [Google Scholar]
  140. Olfert ED, Godson DL. Humane endpoints for infectious disease animal models. ILAR J 2000;41:99–104 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000952
Loading
/content/journal/jmm/10.1099/jmm.0.000952
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error