1887

Abstract

Purpose. Staphylococcus aureus isolates, collected from various clinical samples, were analysed to evaluate the contribution of the genetic background of both erythromycin-resistant (ERSA) and -susceptible (ESSA) S. aureus strains to biofilm formation.

Methods. A total of 66 ESSA and 43 ERSA clinical isolates were studied for adhesiveness and biofilm formation under different atmospheres. All isolates were evaluated for phenotypic and genotypic macrolide resistance, and for clonal relatedness by pulsed-field gel electrophoresis (PFGE), and by spa typing on representative isolates.

Results. A high genetic heterogeneity was encountered, although 10 major PFGE types accounted for 86 % with a few small spatially and temporally related clusters. Overall, biofilm formation under anoxia was significantly lower than under oxic and micro-aerophilic atmospheres. Biofilm formation by ESSA was significantly higher compared to ERSA under oxic and micro-aerophilic conditions. Adhesiveness to plastic was significantly higher among respiratory tract infection isolates under micro-aerophilic conditions, while surgical site infection isolates formed significantly higher biomass of biofilm under oxic and micro-aerophilic atmospheres compared to anoxia. Pulsotype 2 and 4 strains formed significantly higher biofilm biomass than pulsotype 1, with strains belonging to CC8 forming significantly more compared to those belonging to CC5, under both oxic and micro-aerophilic atmospheres.

Conclusions. S. aureus biofilm formation appears to be more efficient in ESSA than ERSA, associated with specific S. aureus lineages, mainly CC8 and CC15, and affected by atmosphere. Further studies investigating the relationship between antibiotic resistance and biofilm formation could prove useful in the development of new strategies for the management of S. aureus infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000893
2018-12-12
2019-10-23
Loading full text...

Full text loading...

References

  1. Leid JG, Shirtliff ME, Costerton JW, Stoodley P. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 2002;70:6339–6345 [CrossRef][PubMed]
    [Google Scholar]
  2. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  3. Gemmell CG, Edwards DI, Fraise AP, Gould FK, Ridgway GL et al. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother 2006;57:589–608 [CrossRef][PubMed]
    [Google Scholar]
  4. Berg HF, Tjhie JH, Scheffer GJ, Peeters MF, van Keulen PH et al. Emergence and persistence of macrolide resistance in oropharyngeal flora and elimination of nasal carriage of Staphylococcus aureus after therapy with slow-release clarithromycin: a randomized, double-blind, placebo-controlled study. Antimicrob Agents Chemother 2004;48:4183–4188 [CrossRef][PubMed]
    [Google Scholar]
  5. Kastner U, Guggenbichler JP. Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection 2001;29:251–256 [CrossRef][PubMed]
    [Google Scholar]
  6. Fiebelkorn KR, Crawford SA, Mcelmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 2003;41:4740–4744 [CrossRef][PubMed]
    [Google Scholar]
  7. Facinelli B, Spinaci C, Magi G, Giovanetti E, E Varaldo P. Association between erythromycin resistance and ability to enter human respiratory cells in group A streptococci. Lancet 2001;358:30–33 [CrossRef][PubMed]
    [Google Scholar]
  8. Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B et al. Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol 2006;44:2721–2727 [CrossRef][PubMed]
    [Google Scholar]
  9. O'Neill E, Pozzi C, Houston P, Smyth D, Humphreys H et al. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 2007;45:1379–1388 [CrossRef][PubMed]
    [Google Scholar]
  10. O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 2008;190:3835–3850 [CrossRef][PubMed]
    [Google Scholar]
  11. Regassa LB, Novick RP, Betley MJ. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun 1992;60:3381–3388[PubMed]
    [Google Scholar]
  12. Guyton AC, Hall JE. Textbook of Medical Physiology, 10th ed. Philadelphia: W.B. Saunders company; 2001
    [Google Scholar]
  13. Gherardi G, de Florio L, Lorino G, Fico L, Dicuonzo G. Macrolide resistance genotypes and phenotypes among erythromycin-resistant clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci, Italy. FEMS Immunol Med Microbiol 2009;55:62–67 [CrossRef][PubMed]
    [Google Scholar]
  14. Khan SA, Nawaz MS, Khan AA, Cerniglia CE. Simultaneous detection of erythromycin-resistant methylase genes ermA and ermC from Staphylococcus spp. by multiplex-PCR. Mol Cell Probes 1999;13:381–387 [CrossRef][PubMed]
    [Google Scholar]
  15. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J et al. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 1999;43:2823–2830 [CrossRef][PubMed]
    [Google Scholar]
  16. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 2003;41:4089–4094 [CrossRef][PubMed]
    [Google Scholar]
  17. Ardic N, Ozyurt M, Sareyyupoglu B, Haznedaroglu T. Investigation of erythromycin and tetracycline resistance genes in methicillin-resistant staphylococci. Int J Antimicrob Agents 2005;26:213–218 [CrossRef][PubMed]
    [Google Scholar]
  18. Stepanović S, Vuković D, Hola V, di Bonaventura G, Djukić S et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007;115:891–899 [CrossRef][PubMed]
    [Google Scholar]
  19. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 2007;13 Suppl 3:1–46 [CrossRef][PubMed]
    [Google Scholar]
  20. Harmsen D, Claus H, Witte W, Rothgänger J, Claus H et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 2003;41:5442–5448 [CrossRef][PubMed]
    [Google Scholar]
  21. Monaco M, Sanchini A, Grundmann H, Pantosti A. Vancomycin-heteroresistant phenotype in invasive methicillin-resistant Staphylococcus aureus isolates belonging to spa type 041. Eur J Clin Microbiol Infect Dis 2010;29:771–777 [CrossRef][PubMed]
    [Google Scholar]
  22. Grundmann H, Schouls LM, Aanensen DM, Pluister GN, Tami A et al. The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Euro Surveill 2014;19:20987 [CrossRef][PubMed]
    [Google Scholar]
  23. Oosthuysen WF, Orth H, Lombard CJ, Sinha B, Wasserman E. Population structure analyses of Staphylococcus aureus at Tygerberg Hospital, South Africa, reveals a diverse population, a high prevalence of Panton-Valentine leukocidin genes, and unique local methicillin-resistant S. aureus clones. Clin Microbiol Infect 2014;20:652–659 [CrossRef][PubMed]
    [Google Scholar]
  24. Schaumburg F, Ngoa UA, Kösters K, Köck R, Adegnika AA et al. Virulence factors and genotypes of Staphylococcus aureus from infection and carriage in Gabon. Clin Microbiol Infect 2011;17:1507–1513 [CrossRef][PubMed]
    [Google Scholar]
  25. Tavares A, Miragaia M, Rolo J, Coelho C, de Lencastre H. High prevalence of hospital-associated methicillin-resistant Staphylococcus aureus in the community in Portugal: evidence for the blurring of community-hospital boundaries. Eur J Clin Microbiol Infect Dis 2013;32:1269–1283 [CrossRef][PubMed]
    [Google Scholar]
  26. Kurt K, Alderborn A, Nilsson M, Strommenger B, Witte W et al. Multiplexed genotyping of methicillin-resistant Staphylococcus aureus isolates by use of padlock probes and tag microarrays. J Clin Microbiol 2009;47:577–585 [CrossRef][PubMed]
    [Google Scholar]
  27. Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D et al. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010;7:e1000215 [CrossRef][PubMed]
    [Google Scholar]
  28. Deurenberg RH, Nulens E, Valvatne H, Sebastian S, Driessen C et al. Cross-border dissemination of methicillin-resistant Staphylococcus aureus, Euregio Meuse-Rhin region. Emerg Infect Dis 2009;15:727–734 [CrossRef][PubMed]
    [Google Scholar]
  29. Arakere G, Chakrakodi B, Prabhakara S, Isloor S, Hegde NR et al. Comparison of Bengal Bay Clone ST772 with Bovine Staphylococcus aureus Isolates from India. Conference: Interscience Conference of Antimicrobial Agents and Chemotherapy (ICAAC) USA: San Francisco; 2012
    [Google Scholar]
  30. Donaldson SH, Boucher RC. Update on pathogenesis of cystic fibrosis lung disease. Curr Opin Pulm Med 2003;9:486–491 [CrossRef][PubMed]
    [Google Scholar]
  31. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002;109:317–325 [CrossRef][PubMed]
    [Google Scholar]
  32. Croes S, Deurenberg RH, Boumans ML, Beisser PS, Neef C et al. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol 2009;9:229 [CrossRef][PubMed]
    [Google Scholar]
  33. Stepanović S, Djukić N, Djordjević V, Djukić S, Djukić V. Influence of the incubation atmosphere on the production of biofilm by staphylococci. Clin Microbiol Infect 2003;9:955–958 [CrossRef][PubMed]
    [Google Scholar]
  34. Ursic V, Tomic V, Kosnik M. Effect of different incubation atmospheres on the production of biofilm in methicillin-resistant Staphylococcus aureus (MRSA) grown in nutrient-limited medium. Curr Microbiol 2008;57:386–390 [CrossRef][PubMed]
    [Google Scholar]
  35. Cramton SE, Ulrich M, Götz F, Döring G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 2001;69:4079–4085 [CrossRef][PubMed]
    [Google Scholar]
  36. Asai K, Yamada K, Yagi T, Baba H, Kawamura I et al. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms. J Infect Chemother 2015;21:55–61 [CrossRef][PubMed]
    [Google Scholar]
  37. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007;28:1711–1720 [CrossRef][PubMed]
    [Google Scholar]
  38. O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 2008;190:3835–3850 [CrossRef][PubMed]
    [Google Scholar]
  39. Hausner M, Wuertz S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 1999;65:3710–3713[PubMed]
    [Google Scholar]
  40. Águila-Arcos S, Álvarez-Rodríguez I, Garaiyurrebaso O, Garbisu C, Grohmann E et al. Biofilm-forming clinical Staphylococcus isolates harbor horizontal transfer and antibiotic resistance genes. Front Microbiol 2017;8:8 [CrossRef][PubMed]
    [Google Scholar]
  41. Naicker PR, Karayem K, Hoek KG, Harvey J, Wasserman E. Biofilm formation in invasive Staphylococcus aureus isolates is associated with the clonal lineage. Microb Pathog 2016;90:41–49 [CrossRef][PubMed]
    [Google Scholar]
  42. Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E et al. Comparative characterisation of genotypically different clones of MRSA in the production of biofilms. J Biomed Biotechnol 2012;2012:1–7 [CrossRef][PubMed]
    [Google Scholar]
  43. Lim Y, Shin HJ, Kwon AS, Reu JH, Park G et al. Predictive genetic risk markers for strong biofilm-forming Staphylococcus aureus: fnbB gene and SCCmec type III. Diagn Microbiol Infect Dis 2013;76:539–541 [CrossRef][PubMed]
    [Google Scholar]
  44. Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol 2008;8:747–763 [CrossRef][PubMed]
    [Google Scholar]
  45. Amaral MM, Coelho LR, Flores RP, Souza RR, Silva-Carvalho MC et al. The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 2005;192:801–810 [CrossRef][PubMed]
    [Google Scholar]
  46. Smith K, Perez A, Ramage G, Lappin D, Gemmell CG et al. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microbiol 2008;57:1018–1023 [CrossRef][PubMed]
    [Google Scholar]
  47. Mehndiratta PL, Bhalla P. Typing of methicillin resistant Staphylococcus aureus: a technical review. Indian J Med Microbiol 2012;30:16–23 [CrossRef][PubMed]
    [Google Scholar]
  48. Luther MK, Parente DM, Caffrey AR, Daffinee KE, Lopes VV et al. Clinical and Genetic Risk Factors for Biofilm-Forming Staphylococcus aureus. Antimicrob Agents Chemother 2018;62:e02252-17 [CrossRef][PubMed]
    [Google Scholar]
  49. Deurenberg RH, Rijnders MI, Sebastian S, Welling MA, Beisser PS et al. The Staphylococcus aureus lineage-specific markers collagen adhesin and toxic shock syndrome toxin 1 distinguish multilocus sequence typing clonal complexes within spa clonal complexes. Diagn Microbiol Infect Dis 2009;65:116–122 [CrossRef][PubMed]
    [Google Scholar]
  50. Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 2006;188:669–676 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000893
Loading
/content/journal/jmm/10.1099/jmm.0.000893
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error