1887

Abstract

There are challenges regarding increased global rates of microbial resistance and the emergence of new mechanisms that result in microorganisms becoming resistant to antimicrobial drugs. Fosfomycin is a broad-spectrum bactericidal antibiotic effective against Gram-negative and certain Gram-positive bacteria, such as Staphylococci, that interfere with cell wall synthesis. During the last 40 years, fosfomycin has been evaluated in a wide range of applications and fields. Although numerous studies have been done in this area, there remains limited information regarding the prevalence of resistance. Therefore, in this review, we focus on the available data concerning the mechanisms and increasing resistance regarding fosfomycin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000874
2018-11-15
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/1/11.html?itemId=/content/journal/jmm/10.1099/jmm.0.000874&mimeType=html&fmt=ahah

References

  1. Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 2010;10:43–50 [CrossRef][PubMed]
    [Google Scholar]
  2. Gholami M, Mohammadi R, Arzanlou M, Akbari Dourbash F, Kouhsari E et al. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer. BMC Infect Dis 2017;17:395 [CrossRef][PubMed]
    [Google Scholar]
  3. Ruxer J, Mozdzan M, Loba J, Markuszewski L. Fosfomycin, co-trimoxazole and nitrofurantoin in the treatment of recurrent uncomplicated urinary tract infections in type 2 diabetes mellitus]. Wiadomosci lekarskie (Warsaw, Poland: 1960) 2006;60:235–240
    [Google Scholar]
  4. Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 1969;166:122–123 [CrossRef][PubMed]
    [Google Scholar]
  5. Silver LL. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 2017;7:a025262 [CrossRef][PubMed]
    [Google Scholar]
  6. Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 2008;46:1069–1077 [CrossRef][PubMed]
    [Google Scholar]
  7. Kuzuyama T, Hidaka T, Kamigiri K, Imai S, Seto H. Studies on the biosynthesis of fosfomycin. 4. The biosynthetic origin of the methyl group of fosfomycin. J Antibiot 1992;45:1812–1814 [CrossRef][PubMed]
    [Google Scholar]
  8. Raz R. Fosfomycin: an old-new antibiotic. Clin Microbiol Infect 2012;18:4–7 [CrossRef][PubMed]
    [Google Scholar]
  9. Baylan O. [Fosfomycin: past, present and future]. Mikrobiyol Bul 2010;44:311–321[PubMed]
    [Google Scholar]
  10. de Jong Z, Pontonnier F, Plante P. Single-dose fosfomycin trometamol (Monuril) versus multiple-dose norfloxacin: results of a multicenter study in females with uncomplicated lower urinary tract infections. Urol Int 1991;46:344–348 [CrossRef][PubMed]
    [Google Scholar]
  11. Patel SS, Balfour JA, Bryson HM. Fosfomycin tromethamine. Drugs 1997;53:637–656 [CrossRef]
    [Google Scholar]
  12. Minassian MA, Lewis DA, Chattopadhyay D, Bovill B, Duckworth GJ et al. A comparison between single-dose fosfomycin trometamol (Monuril) and a 5-day course of trimethoprim in the treatment of uncomplicated lower urinary tract infection in women. Int J Antimicrob Agents 1998;10:39–47 [CrossRef][PubMed]
    [Google Scholar]
  13. Kahan FM, Kahan JS, Cassidy PJ, Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 1974;235:364–386 [CrossRef][PubMed]
    [Google Scholar]
  14. Zimmerman S, Stapley E, Wallick H, Phosphonomycin BR. Susceptibility testing method and survey. Antimicrob Agents Chemother 1968;9:303–309
    [Google Scholar]
  15. Kirby WM. Pharmacokinetics of fosfomycin. Chemotherapy 1977;23 Suppl 1:141–151 [CrossRef][PubMed]
    [Google Scholar]
  16. Bergan T. Degree of absorption, pharmacokinetics of fosfomycin trometamol and duration of urinary antibacterial activity. Infection 1990;18:S65–S69 [CrossRef][PubMed]
    [Google Scholar]
  17. Popovic M, Steinort D, Pillai S, Joukhadar C. Fosfomycin: an old, new friend?. Eur J Clin Microbiol Infect Dis 2010;29:127–142 [CrossRef][PubMed]
    [Google Scholar]
  18. Dinh A, Salomon J, Bru JP, Bernard L. Fosfomycin: efficacy against infections caused by multidrug-resistant bacteria. Scand J Infect Dis 2012;44:182–189 [CrossRef][PubMed]
    [Google Scholar]
  19. Chudzik-Rzad B, Andrzejczuk S, Rzad M, Tomasiewicz K, Malm A. Overview on fosfomycin and its current and future clinical significance. Current Issues in Pharmacy and Medical Sciences 2015;28:33–36 [CrossRef]
    [Google Scholar]
  20. Docobo-Pérez F, Drusano GL, Johnson A, Goodwin J, Whalley S et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother 2015;59:5602–5610 [CrossRef][PubMed]
    [Google Scholar]
  21. Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis 2011;15:e732e739 [CrossRef][PubMed]
    [Google Scholar]
  22. Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 2012;67:255–268 [CrossRef][PubMed]
    [Google Scholar]
  23. Poulakou G, Bassetti M, Righi E, Dimopoulos G. Current and future treatment options for infections caused by multidrug-resistant Gram-negative pathogens. Future Microbiol 2014;9:1053–1069 [CrossRef][PubMed]
    [Google Scholar]
  24. Gialdroni Grassi G. Fosfomycin trometamol: historical background and clinical development. Infection 1990;18:S57–S59 [CrossRef][PubMed]
    [Google Scholar]
  25. Ferrara A, Migliori G, Piccioni P, Grassi F, Colombo M et al. Influence of experimental conditions on in vitro activity of fosfomycin trometamol and emergence of resistant variants. New Trends in Urinary Tract Infections: Karger Publishers 1988;269–283
    [Google Scholar]
  26. Frossard M, Joukhadar C, Erovic BM, Dittrich P, Mrass PE et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob Agents Chemother 2000;44:2728–2732 [CrossRef][PubMed]
    [Google Scholar]
  27. Lu CL, Liu CY, Huang YT, Liao CH, Teng LJ et al. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother 2011;55:AAC. 00349–00311 [CrossRef][PubMed]
    [Google Scholar]
  28. Segre G, Bianchi E, Cataldi A, Zannini G. Pharmacokinetic profile of fosfomycin trometamol (Monuril). Eur Urol 1987;13:56–63 [CrossRef][PubMed]
    [Google Scholar]
  29. Fillastre J, Leroy A, Humbert G, Borsa F, Josse S et al. Comparative pharmacokinetics of fosfomycin trometamol versus calcium fosfomycin in elderly subjects and uraemic patients. In New Trends in Urinary Tract Infections Basel, Switzerland: Karger Publishers; 1988; pp.143–156
    [Google Scholar]
  30. Matzi V, Lindenmann J, Porubsky C, Kugler SA, Maier A et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother 2010;65:995–998 [CrossRef][PubMed]
    [Google Scholar]
  31. Schintler MV, Traunmüller F, Metzler J, Kreuzwirt G, Spendel S et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother 2009;64:574–578 [CrossRef][PubMed]
    [Google Scholar]
  32. Joukhadar C, Klein N, Dittrich P, Zeitlinger M, Geppert A et al. Target site penetration of fosfomycin in critically ill patients. J Antimicrob Chemother 2003;51:1247–1252 [CrossRef][PubMed]
    [Google Scholar]
  33. Bergogne-Bérézin E, Muller-Serieys C, Joly-Guillou ML, Dronne N. Trometamol-fosfomycin (Monuril) bioavailability and food-drug interaction. Eur Urol 1987;13:64–68 [CrossRef][PubMed]
    [Google Scholar]
  34. Falagas ME, Roussos N, Gkegkes ID, Rafailidis PI, Karageorgopoulos DE. Fosfomycin for the treatment of infections caused by Gram-positive cocci with advanced antimicrobial drug resistance: a review of microbiological, animal and clinical studies. Expert Opin Investig Drugs 2009;18:921–944 [CrossRef][PubMed]
    [Google Scholar]
  35. Bergan T, Thorsteinsson SB, Albini E. Pharmacokinetic profile of fosfomycin trometamol. Chemotherapy 1993;39:297–301 [CrossRef][PubMed]
    [Google Scholar]
  36. Auer S, Wojna A, Hell M. Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 2010;54:4006–4008 [CrossRef][PubMed]
    [Google Scholar]
  37. Williams JD. Lower urinary tract infection: rationale and efficacy of single-dose antibacterial therapy. Eur Urol 1987;13:54–55 [CrossRef][PubMed]
    [Google Scholar]
  38. Brumfitt W, Hamilton-Miller J. The optimal duration of antibiotic treatment of urinary infections. In New trends in urinary tract infections Basel, Switzerland: Karger Publishers; 1988; pp.62–77
    [Google Scholar]
  39. Neuner EA, Sekeres J, Hall GS, van Duin D. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob Agents Chemother 2012;56:5744–5748 [CrossRef][PubMed]
    [Google Scholar]
  40. Titelman E, Iversen A, Kalin M, Giske CG. Efficacy of pivmecillinam for treatment of lower urinary tract infection caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Microb Drug Resist 2012;18:189–192 [CrossRef][PubMed]
    [Google Scholar]
  41. Lepak AJ, Zhao M, Vanscoy B, Taylor DS, Ellis-Grosse E et al. In Vivo pharmacokinetics and pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the neutropenic murine thigh infection model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017;61:e0047600417 [CrossRef][PubMed]
    [Google Scholar]
  42. Brown ED, Vivas EI, Walsh CT, Kolter R. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol 1995;177:4194–4197 [CrossRef][PubMed]
    [Google Scholar]
  43. Eschenburg S, Priestman M, Schönbrunn E. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 2005;280:3757–3763 [CrossRef][PubMed]
    [Google Scholar]
  44. Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics 2013;2:217–236 [CrossRef][PubMed]
    [Google Scholar]
  45. Sastry S, Doi Y. Fosfomycin: resurgence of an old companion. J Infect Chemother 2016;22:273–280 [CrossRef][PubMed]
    [Google Scholar]
  46. Tang HJ, Chen CC, Zhang CC, Su BA, Li CM et al. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn Microbiol Infect Dis 2013;77:254–257 [CrossRef][PubMed]
    [Google Scholar]
  47. Prakash V, Lewis JS, Herrera ML, Wickes BL, Jorgensen JH. Oral and parenteral therapeutic options for outpatient urinary infections caused by enterobacteriaceae producing CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2009;53:1278–1280 [CrossRef][PubMed]
    [Google Scholar]
  48. Vardakas KZ, Polyzos KA, Patouni K, Rafailidis PI, Samonis G et al. Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence. Int J Antimicrob Agents 2012;40:1–8 [CrossRef][PubMed]
    [Google Scholar]
  49. The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. 2018;http://www.eucast.org
  50. Gupta V, Rani H, Singla N, Kaistha N, Chander J. Determination of Extended-Spectrum β-lactamases and AmpC production in uropathogenic isolates of Escherichia coli and susceptibility to Fosfomycin. J Lab Physicians 2013;5:90–93 [CrossRef][PubMed]
    [Google Scholar]
  51. Samonis G, Maraki S, Rafailidis PI, Kapaskelis A, Kastoris AC et al. Antimicrobial susceptibility of Gram-negative nonurinary bacteria to fosfomycin and other antimicrobials. Future Microbiol 2010;5:961–970 [CrossRef][PubMed]
    [Google Scholar]
  52. Martinez-Martinez L, Rodriguez G, Pascual A, Suárez AI, Perea EJ. In-vitro activity of antimicrobial agent combinations against multiresistant Acinetobacter baumannii. J Antimicrob Chemother 1996;38:1107–1108 [CrossRef][PubMed]
    [Google Scholar]
  53. Okazaki M, Suzuki K, Asano N, Araki K, Shukuya N et al. Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J Infect Chemother 2002;8:37–42 [CrossRef][PubMed]
    [Google Scholar]
  54. Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev 2016;29:321–347 [CrossRef][PubMed]
    [Google Scholar]
  55. Bogdanovich T, Ednie LM, Shapiro S, Appelbaum PC. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother 2005;49:4210–4219 [CrossRef][PubMed]
    [Google Scholar]
  56. MacGowan AP, Holt HA, Bywater MJ, Reeves DS. In vitro antimicrobial susceptibility of Listeria monocytogenes isolated in the UK and other Listeria species. Eur J Clin Microbiol Infect Dis 1990;9:767–770 [CrossRef][PubMed]
    [Google Scholar]
  57. Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 2009;34:111–120 [CrossRef][PubMed]
    [Google Scholar]
  58. Suárez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother 1991;35:791–795 [CrossRef][PubMed]
    [Google Scholar]
  59. Greenwood D. Fosfomycin trometamol: activity in vitro against urinary tract pathogens. Infection 1990;18 Suppl 2:S60–S64 [CrossRef][PubMed]
    [Google Scholar]
  60. Etienne J, Gerbaud G, Courvalin P, Fleurette J. Plasmid-mediated resistance to fosfomycin in Staphylococcus epidermidis. FEMS Microbiol Lett 1989;52:133–138[PubMed]
    [Google Scholar]
  61. Nair SK, van der Donk WA. Structure and mechanism of enzymes involved in biosynthesis and breakdown of the phosphonates fosfomycin, dehydrophos, and phosphinothricin. Arch Biochem Biophys 2011;505:13–21 [CrossRef][PubMed]
    [Google Scholar]
  62. Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother 2003;47:2850–2858 [CrossRef][PubMed]
    [Google Scholar]
  63. Kadner RJ. Expression of the Uhp sugar-phosphate transport system of Escherichia coli. In Two-component signal transduction Washington, DC: American Society of Microbiology; 1995; pp.263–274
    [Google Scholar]
  64. Merkel TJ, Dahl JL, Ebright RH, Kadner RJ. Transcription activation at the Escherichia coli uhpT promoter by the catabolite gene activator protein. J Bacteriol 1995;177:1712–1718 [CrossRef][PubMed]
    [Google Scholar]
  65. Minassian M, Williams J. The clinical pharmacology of fosfomycin trometamol. Rev Contemp Pharmacother 1995;6:45–54
    [Google Scholar]
  66. Castañeda-García A, Rodríguez-Rojas A, Guelfo JR, Blázquez J. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol 2009;191:6968–6974 [CrossRef][PubMed]
    [Google Scholar]
  67. Larson TJ, Ye SZ, Weissenborn DL, Hoffmann HJ, Schweizer H. Purification and characterization of the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12. J Biol Chem 1987;262:15869–15874[PubMed]
    [Google Scholar]
  68. Yang B, Gerhardt SG, Larson TJ. Action at a distance for glp repressor control of glpTQ transcription in Escherichia coli K-12. Mol Microbiol 1997;24:511–521 [CrossRef][PubMed]
    [Google Scholar]
  69. Alper MD, Ames BN. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol 1978;133:149–157[PubMed]
    [Google Scholar]
  70. Larson TJ, Cantwell JS, van Loo-Bhattacharya AT. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12. J Biol Chem 1992;267:6114–6121[PubMed]
    [Google Scholar]
  71. Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K et al. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 1996;35:4923–4928 [CrossRef][PubMed]
    [Google Scholar]
  72. de Smet KA, Kempsell KE, Gallagher A, Duncan K, Young DB. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 1999;145:3177–3184 [CrossRef][PubMed]
    [Google Scholar]
  73. Jiang S, Gilpin ME, Attia M, Ting YL, Berti PJ. Lyme disease enolpyruvyl-UDP-GlcNAc synthase: fosfomycin-resistant MurA from Borrelia burgdorferi, a fosfomycin-sensitive mutant, and the catalytic role of the active site Asp. Biochemistry 2011;50:2205–2212 [CrossRef][PubMed]
    [Google Scholar]
  74. McCoy AJ, Sandlin RC, Maurelli AT. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 2003;185:1218–1228 [CrossRef][PubMed]
    [Google Scholar]
  75. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 2010;35:333–337 [CrossRef][PubMed]
    [Google Scholar]
  76. Gisin J, Schneider A, Nägele B, Borisova M, Mayer C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol 2013;9:491–493 [CrossRef][PubMed]
    [Google Scholar]
  77. Woodyer RD, Shao Z, Thomas PM, Kelleher NL, Blodgett JA et al. Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem Biol 2006;13:1171–1182 [CrossRef][PubMed]
    [Google Scholar]
  78. Kobayashi S, Kuzuyama T, Seto H. Characterization of the fomA and fomB gene products from Streptomyces wedmorensis, which confer fosfomycin resistance on Escherichia coli. Antimicrob Agents Chemother 2000;44:647–650 [CrossRef][PubMed]
    [Google Scholar]
  79. Bernat BA, Laughlin LT, Armstrong RN. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 1997;36:3050–3055 [CrossRef][PubMed]
    [Google Scholar]
  80. Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN. Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 2003;125:15730–15731 [CrossRef][PubMed]
    [Google Scholar]
  81. Lee SY, Park YJ, Yu JK, Jung S, Kim Y et al. Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J Antimicrob Chemother 2012;67:2843–2847 [CrossRef][PubMed]
    [Google Scholar]
  82. Ho PL, Chan J, Lo WU, Lai EL, Cheung YY et al. Prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes among blood and urinary Escherichia coli isolates. J Med Microbiol 2013;62:1707–1713 [CrossRef][PubMed]
    [Google Scholar]
  83. Sato N, Kawamura K, Nakane K, Wachino J, Arakawa Y. First detection of fosfomycin resistance gene fosA3 in CTX-M-producing Escherichia coli isolates from healthy individuals in Japan. Microb Drug Resist 2013;19:477–482 [CrossRef][PubMed]
    [Google Scholar]
  84. Hou J, Huang X, Deng Y, He L, Yang T et al. Dissemination of fosfomycin resistance gene fosA3 with CTX-M β-lactamase genes and rmtB carried on IncFII plasmids among Escherichia coli isolates from pets in China. Antimicrob Agents Chemother 2012;AAC. 05104–.05111
    [Google Scholar]
  85. Villa L, Guerra B, Schmoger S, Fischer J, Helmuth R et al. IncA/C Plasmid Carrying bla(NDM-1), bla(CMY-16), and fosA3 in a Salmonella enterica serovar corvallis strain isolated from a migratory wild Bird in Germany. Antimicrob Agents Chemother 2015;59:6597–6600 [CrossRef][PubMed]
    [Google Scholar]
  86. Ito R, Mustapha MM, Tomich AD, Callaghan JD, McElheny CL et al. Widespread fosfomycin resistance in gram-negative bacteria attributable to the chromosomal fosA Gene. MBio 2017;8:e0074900717 [CrossRef][PubMed]
    [Google Scholar]
  87. Vardakas KZ, Legakis NJ, Triarides N, Falagas ME. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents 2016;47:269–285 [CrossRef][PubMed]
    [Google Scholar]
  88. Endimiani A, Patel G, Hujer KM, Swaminathan M, Perez F et al. In vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob Agents Chemother 2010;54:526–529 [CrossRef][PubMed]
    [Google Scholar]
  89. Rigsby RE, Fillgrove KL, Beihoffer LA, Armstrong RN. Fosfomycin resistance proteins: a nexus of glutathione transferases and epoxide hydrolases in a metalloenzyme superfamily. Methods Enzymol 2005;401:367–379 [CrossRef][PubMed]
    [Google Scholar]
  90. Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 2012;67:255–268 [CrossRef][PubMed]
    [Google Scholar]
  91. Dulaney EL, Ruby CL. In vitro development of resistance to fosfomycin. J Antibiot 1977;30:252–261 [CrossRef][PubMed]
    [Google Scholar]
  92. Cao XL, Shen H, Xu YY, Xu XJ, Zhang ZF et al. High prevalence of fosfomycin resistance gene fosA3 in bla CTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010-2014. Epidemiol Infect 2017;145:818–824 [CrossRef][PubMed]
    [Google Scholar]
  93. Ho PL, Chan J, Lo WU, Law PY, Li Z et al. Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant Escherichia coli from livestock and other animals. J Appl Microbiol 2013;114:695–702 [CrossRef][PubMed]
    [Google Scholar]
  94. Li Y, Zheng B, Li Y, Zhu S, Xue F et al. Antimicrobial Susceptibility and Molecular Mechanisms of Fosfomycin Resistance in Clinical Escherichia coli Isolates in Mainland China. PLoS One 2015;10:e0135269 [CrossRef][PubMed]
    [Google Scholar]
  95. Jiang Y, Shen P, Wei Z, Liu L, He F et al. Dissemination of a clone carrying a fosA3-harbouring plasmid mediates high fosfomycin resistance rate of KPC-producing Klebsiella pneumoniae in China. Int J Antimicrob Agents 2015;45:66–70 [CrossRef][PubMed]
    [Google Scholar]
  96. Li G, Zhang Y, Bi D, Shen P, Ai F et al. First report of a clinical, multidrug-resistant Enterobacteriaceae isolate coharboring fosfomycin resistance gene fosA3 and carbapenemase gene blaKPC-2 on the same transposon, Tn1721. Antimicrob Agents Chemother 2015;59:338–343 [CrossRef][PubMed]
    [Google Scholar]
  97. Fu Z, Ma Y, Chen C, Guo Y, Hu F et al. Prevalence of fosfomycin resistance and mutations in murA, glpT, and uhpT in methicillin-resistant staphylococcus aureus strains isolated from blood and cerebrospinal fluid samples. Front Microbiol 2015;6: [CrossRef][PubMed]
    [Google Scholar]
  98. Yao H, Wu D, Lei L, Shen Z, Wang Y et al. The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. Vet Microbiol 2016;193:67–71 [CrossRef][PubMed]
    [Google Scholar]
  99. Jiang W, Men S, Kong L, Ma S, Yang Y et al. Prevalence of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 Among CTX-M-Producing Escherichia coli Isolates from Chickens in China. Foodborne Pathog Dis 2017;14:210–218 [CrossRef][PubMed]
    [Google Scholar]
  100. Chen C, Xu X, Qu T, Yu Y, Ying C et al. Prevalence of the fosfomycin-resistance determinant, fosB3, in Enterococcus faecium clinical isolates from China. J Med Microbiol 2014;63:1484–1489 [CrossRef][PubMed]
    [Google Scholar]
  101. Qu TT, Shi KR, Ji JS, Yang Q, Du XX et al. Fosfomycin resistance among vancomycin-resistant enterococci owing to transfer of a plasmid harbouring the fosB gene. Int J Antimicrob Agents 2014;43:361–365 [CrossRef][PubMed]
    [Google Scholar]
  102. Wang Y, Yao H, Deng F, Liu D, Zhang Y et al. Identification of a novel fosXCC gene conferring fosfomycin resistance in Campylobacter. J Antimicrob Chemother 2015;70:dku488 [CrossRef][PubMed]
    [Google Scholar]
  103. Wachino J, Yamane K, Suzuki S, Kimura K, Arakawa Y. Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob Agents Chemother 2010;54:3061–3064 [CrossRef][PubMed]
    [Google Scholar]
  104. Shimizu M, Shigeobu F, Miyakozawa I, Nakamura A, Suzuki M et al. Novel Fosfomycin resistance of Pseudomonas aeruginosa clinical isolates recovered in Japan in 1996. Antimicrob Agents Chemother 2000;44:2007–2008 [CrossRef][PubMed]
    [Google Scholar]
  105. Horii T, Kimura T, Sato K, Shibayama K, Ohta M. Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Antimicrob Agents Chemother 1999;43:789–793 [CrossRef][PubMed]
    [Google Scholar]
  106. Kitanaka H, Wachino J, Jin W, Yokoyama S, Sasano MA et al. Novel integron-mediated fosfomycin resistance gene fosK. Antimicrob Agents Chemother 2014;58:4978–4979 [CrossRef][PubMed]
    [Google Scholar]
  107. Yukawa S, Tsuyuki Y, Sato T, Fukuda A, Usui M et al. Antimicrobial Resistance of Pseudomonas aeruginosa Isolated from Dogs and Cats in Primary Veterinary Hospitals in Japan. Jpn J Infect Dis 2017;70:461–463 [CrossRef][PubMed]
    [Google Scholar]
  108. Cho YH, Jung SI, Chung HS, Hs Y, Hwang EC et al. Antimicrobial susceptibilities of extended-spectrum beta-lactamase-producing Escherichia coli. International urology and nephrology 2015;47:1059–1066
    [Google Scholar]
  109. Ko KS, Suh JY, Peck KR, Lee MY, Oh WS et al. In vitro activity of fosfomycin against ciprofloxacin-resistant or extended-spectrum beta-lactamase-producing Escherichia coli isolated from urine and blood. Diagn Microbiol Infect Dis 2007;58:111–115 [CrossRef][PubMed]
    [Google Scholar]
  110. Yeganeh-Sefidan F, Ghotaslou R, Akhi MT, Sadeghi MR, Mohammadzadeh-Asl Y et al. Fosfomycin, interesting alternative drug for treatment of urinary tract infections created by multiple drug resistant and extended spectrum β-lactamase producing strains. Iran J Microbiol 2016;8:125[PubMed]
    [Google Scholar]
  111. Heidari H, Hasanpour S, Ebrahim-Saraie HS, Motamedifar M. High Incidence of Virulence Factors Among Clinical Enterococcus faecalis Isolates in Southwestern Iran. Infect Chemother 2017;49:51–56 [CrossRef][PubMed]
    [Google Scholar]
  112. Sefidan FY, Azargun R, Ghotaslou R. Fosfomycin, a therapeutic option for infections produced by multiple drug-resistant Enterobacteriaceae. Microbiol Res 2016;7:
    [Google Scholar]
  113. Karadağ A. In vitro efficacy of fosfomycin against clinical strains. J Microbiol Infect Dis 2014;4:55–58 [CrossRef]
    [Google Scholar]
  114. Tas T, Mengeloglu Z, Kocoglu E, Bucak Ö. In vitro activity of fosfomycin against Escherichia coli strains isolated from recurrent urinary tract infections. SEEJPH 2013;3:147–151
    [Google Scholar]
  115. Pullukçu H, Aydemir Şöhret, Işikgöz Taşbakan M, Sipahi OR, Çilli Hall Jr F et al. Is there a rise in resistance rates to fosfomycin and other commonly used antibiotics in Escherichia coli-mediated urinary tract infections? A perspective for 2004 – 2011. Turk J Med Sci 2013;43:537–541 [CrossRef]
    [Google Scholar]
  116. Demir T, Buyukguclu T. Evaluation of the in vitro activity of fosfomycin tromethamine against Gram-negative bacterial strains recovered from community- and hospital-acquired urinary tract infections in Turkey. Int J Infect Dis 2013;17:e966e970 [CrossRef][PubMed]
    [Google Scholar]
  117. Hirsch EB, Zucchi PC, Chen A, Raux BR, Kirby JE et al. Susceptibility of multidrug-resistant gram-negative urine isolates to Oral Antibiotics. Antimicrob Agents Chemother 2016;60:3138–3140 [CrossRef][PubMed]
    [Google Scholar]
  118. Liu H-Y, Lin H-C, Lin Y-C, Yu S-Hua, Wu W-H et al. Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J Microbiol Immunol Infect 2011;44:364–368 [CrossRef]
    [Google Scholar]
  119. Wang JT, Chang SC, Chang FY, Fung CP, Chuang YC et al. Antimicrobial non-susceptibility of Escherichia coli from outpatients and patients visiting emergency rooms in Taiwan. PLoS One 2015;10:e0144103 [CrossRef][PubMed]
    [Google Scholar]
  120. Tseng SP, Wang SF, Kuo CY, Huang JW, Hung WC et al. Characterization of fosfomycin resistant extended-spectrum β-Lactamase-Producing Escherichia coli isolates from human and Pig in Taiwan. PLoS One 2015;10:e0135864 [CrossRef][PubMed]
    [Google Scholar]
  121. Lu PL, Hsieh YJ, Lin JE, Huang JW, Yang TY et al. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int J Antimicrob Agents 2016;48:564–568 [CrossRef][PubMed]
    [Google Scholar]
  122. Habeeb MA, Sarwar Y, Ali A, Salman M, Haque A. Rapid emergence of ESBL producers in E. coli causing urinary and wound infections in Pakistan. 2013
  123. Khan IU, Mirza IA, Ikram A, Ali S, Hussain A et al. In vitro activity of fosfomycin tromethamine against extended spectrum beta-lactamase producing urinary tract bacteria. J Coll Physicians Surg Pak 2014;24:914–917[PubMed]
    [Google Scholar]
  124. Cheema S, Cheema SU. Prevalence of Antibiotic Resistance among Patients with Escherichia coli Urinary Tract Infection in a Private Hospital at Lahore-Pakistan. Pak J Med Health Sci 2016;10:364–347
    [Google Scholar]
  125. Sohail M, Khurshid M, Saleem HG, Javed H, Khan AA. Characteristics and antibiotic resistance of urinary tract pathogens isolated from Punjab, Pakistan. Jundishapur J Microbiol 2015;8: [CrossRef][PubMed]
    [Google Scholar]
  126. Khan BA, Saeed S, Akram A, Khan FB, Nasim A. Nosocomial uropathogens and their antibiotic sensitivity patterns in a tertiary referral teaching hospital in Rawalpindi, Pakistan. J Ayub Med Coll Abbottabad 2010;22:11–12[PubMed]
    [Google Scholar]
  127. Bialvaei AZ, Kouhsari E, Salehi-Abargouei A, Amirmozafari N, Ramazanzadeh R et al. Epidemiology of multidrug-resistant Acinetobacter baumannii strains in Iran: a systematic review and meta-analysis. J Chemother 2017;29:327–337 [CrossRef][PubMed]
    [Google Scholar]
  128. Ayub M, Amir S, Firdous K, Khan S, Iqbal I. E. coli the most prevalent causative agent urinary tract infection in pregnancy: comparative analysis of susceptibility and resistance pattern of antimicrobials. Archives of Clinical Microbiology 2016
    [Google Scholar]
  129. Tariq TM. Bacteriologic profile and antibiogram of blood culture isolates from a children's hospital in Kabul. J Coll Physicians Surg Pak 2014;24:396–399[PubMed]
    [Google Scholar]
  130. Alsamarai AM, Latif IA-R, Abdul-Aziz MM. Antibiotic suceptibility of extended spectrum beta-lactimase [esbl] producing Escerichia coli. 2016
  131. Keah S, Wee E, Chng K, Keah K. Antimicrobial susceptibility of community-acquired uropathogens in general practice. Malays Fam Physician 2007;2:64[PubMed]
    [Google Scholar]
  132. Chin PS, Yu CY, Ang GY, Yin WF, Chan KG. Draft genome sequence of multidrug-resistant Salmonella enterica serovar Brancaster strain PS01 isolated from chicken meat, Malaysia. J Glob Antimicrob Resist 2017;9:41–42 [CrossRef][PubMed]
    [Google Scholar]
  133. Wei LS, Wendy W. Characterization of Vibrio alginolyticus isolated from white leg shrimp (Litopenaeus vannamei) with emphasis on its antibiogram and heavy metal resistance pattern. Archiv 2012;82:221–227
    [Google Scholar]
  134. Al-Zarouni M, Senok A, Al-Zarooni N, Al-Nassay F, Panigrahi D. Extended-spectrum β-lactamase-producing Enterobacteriaceae: in vitro susceptibility to fosfomycin, nitrofurantoin and tigecycline. Med Princ Pract 2012;21:543–547 [CrossRef][PubMed]
    [Google Scholar]
  135. Chayakul P, Hortiwakul R, Ingviya N, Chayakul V. Species distribution and antimicrobial susceptibility of enterococci in hospitalized patients in Southern Thailand. J Infect Dis Antimicrob Agents 2007;24:49–54
    [Google Scholar]
  136. Tharavichitkul P, Khantawa B, Bousoung V, Boonchoo M. Activity of fosfomycin against extended-spectrum- beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli in Maharaj Nakorn Chiang Mai Hospital. J Infect Dis Antimicrob Agents 2005;22:121–126
    [Google Scholar]
  137. Tishyadhigama P, Dejsirilert S, Thongmali O, Sawanpanyalert P, Aswapokee N et al. Antimicrobial resistance among clinical isolates of Staphylococcus aureus in Thailand from 2000 to 2005. J Med Assoc Thai 2009;92:8[PubMed]
    [Google Scholar]
  138. Hortiwakul T, Chayakul P, Ingviya N, Chayakul V. In vitro activity of colistin, fosfomycin, and piperacillin/tazobactam against Acinetobacter baumannii and Pseudomonas aeruginosa in Songklanagarind Hospital, Thailand. J Infect Dis Antimicrob Agents 2009;26:91–96
    [Google Scholar]
  139. Sultan A, Rizvi M, Khan F, Sami H, Shukla I et al. Increasing antimicrobial resistance among uropathogens: Is fosfomycin the answer?. Urol Ann 2015;7:26 [CrossRef][PubMed]
    [Google Scholar]
  140. Sabharwal ER, Sharma R. Fosfomycin: An Alternative Therapy for the Treatment of UTI Amidst Escalating Antimicrobial Resistance. J Clin Diagn Res 2015;9:DC06 [CrossRef][PubMed]
    [Google Scholar]
  141. Sahni RD, Balaji V, Varghese R, John J, Tansarli GS et al. Evaluation of fosfomycin activity against uropathogens in a fosfomycin-naive population in South India: a prospective study. Future Microbiol 2013;8:675–680 [CrossRef][PubMed]
    [Google Scholar]
  142. Vidyalakshmi P, Ghafur KA, Gohel S, Fosfomycin TM. a Promising Option in the Era of NDM1: Susceptibility Data With a Discussion on Its Role in Indian Scenario. Infectious Diseases in Clinical Practice 2016;24:35–38
    [Google Scholar]
  143. Aggarwal R, Ahuja S. Detection of Inducible AmpC β-Lactamase-Producing Gram-Negative Bacteria in a Teaching Tertiary Care Hospital in North India. J Infect Dis Antimicrob Agents 2008;25:129–133
    [Google Scholar]
  144. Hirsch EB, Raux BR, Zucchi PC, Kim Y, McCoy C et al. Activity of fosfomycin and comparison of several susceptibility testing methods against contemporary urine isolates. Int J Antimicrob Agents 2015;46:642–647 [CrossRef][PubMed]
    [Google Scholar]
  145. Kopacz J, Mariano N, Colon-Urban R, Sychangco P, Wehbeh W et al. Identification of extended-spectrum-β-lactamase-positive Klebsiella pneumoniae urinary tract isolates harboring KPC and CTX-M β-lactamases in nonhospitalized patients. Antimicrob Agents Chemother 2013;57:5166–5169 [CrossRef][PubMed]
    [Google Scholar]
  146. Linsenmeyer K, Strymish J, Weir S, Berg G, Brecher S et al. Activity of fosfomycin against extended-spectrum-β-Lactamase-producing uropathogens in patients in the community and hospitalized patients. Antimicrob Agents Chemother 2016;60:1134–1136 [CrossRef][PubMed]
    [Google Scholar]
  147. Descourouez JL, Jorgenson MR, Wergin JE, Rose WE. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant Enterococcus faecium from renal transplant patients with infected urinary stents. Antimicrob Agents Chemother 2013;57:1518–1520 [CrossRef][PubMed]
    [Google Scholar]
  148. Zahedi Bialvaei A, Rahbar M, Yousefi M, Asgharzadeh M, Samadi Kafil H. Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother 2017;72:354–364 [CrossRef][PubMed]
    [Google Scholar]
  149. Johnson JR, Drawz SM, Porter S, Kuskowski MA. Susceptibility to alternative oral antimicrobial agents in relation to sequence type ST131 status and Coresistance phenotype among recent Escherichia coli isolates from U.S. veterans. Antimicrob Agents Chemother 2013;57:4856–4860 [CrossRef][PubMed]
    [Google Scholar]
  150. Alrowais H, McElheny CL, Spychala CN, Sastry S, Guo Q et al. Fosfomycin resistance in Escherichia coli, Pennsylvania, USA. Emerg Infect Dis 2015;21:2045–2047 [CrossRef][PubMed]
    [Google Scholar]
  151. Villar HE, Jugo MB, Macan A, Visser M, Hidalgo M et al. Frequency and antibiotic susceptibility patterns of urinary pathogens in male outpatients in Argentina. J Infect Dev Ctries 2014;8:699–704 [CrossRef][PubMed]
    [Google Scholar]
  152. Morfín-Otero R, Mendoza-Olazarán S, Silva-Sánchez J, Rodríguez-Noriega E, Laca-Díaz J et al. Characterization of Enterobacteriaceae isolates obtained from a tertiary care hospital in Mexico, which produces extended-spectrum β-lactamase. Microb Drug Resist 2013;19:378–383 [CrossRef][PubMed]
    [Google Scholar]
  153. Karlowsky JA, Denisuik AJ, Lagacé-Wiens PR, Adam HJ, Baxter MR et al. In Vitro activity of fosfomycin against Escherichia coli isolated from patients with urinary tract infections in Canada as part of the CANWARD surveillance study. Antimicrob Agents Chemother 2014;58:1252–1256 [CrossRef][PubMed]
    [Google Scholar]
  154. Xu H, Miao V, Kwong W, Xia R, Davies J. Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Lett Appl Microbiol 2011;52:427–429 [CrossRef][PubMed]
    [Google Scholar]
  155. Dicicco M, Weese S, Neethirajan S, Rousseau J, Singh A. Fosfomycin susceptibility of canine methicillin-resistant Staphylococcus pseudintermedius isolates. Res Vet Sci 2014;96:251–253 [CrossRef][PubMed]
    [Google Scholar]
  156. Souza RB, Trevisol DJ, Schuelter-Trevisol F. Bacterial sensitivity to fosfomycin in pregnant women with urinary infection. Braz J Infect Dis 2015;19:319–323 [CrossRef][PubMed]
    [Google Scholar]
  157. Tuon FF, Rocha JL, Formighieri MS, Sfair S, Bertoldi MB et al. Fosfomycin susceptibility of isolates with blaKPC-2 from Brazil. J Infect 2013;67:247–249 [CrossRef][PubMed]
    [Google Scholar]
  158. Superti S, Dias CA, D'Azevedo PA. In vitro fosfomycin activity in vancomycin-resistant Enterococcus faecalis. Braz J Infect Dis 2009;13:123–124 [CrossRef][PubMed]
    [Google Scholar]
  159. Rizek C, Ferraz JR, van der Heijden IM, Giudice M, Mostachio AK et al. In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives. J Infect Chemother 2015;21:114–117 [CrossRef][PubMed]
    [Google Scholar]
  160. Lewis DA, Gumede LY, van der Hoven LA, de Gita GN, de Kock EJ et al. Antimicrobial susceptibility of organisms causing community-acquired urinary tract infections in Gauteng Province, South Africa. S Afr Med J 2013;103:377–381 [CrossRef][PubMed]
    [Google Scholar]
  161. Tansarli GS, Athanasiou S, Falagas ME. Antimicrobial susceptibility of Enterobacteriaceae causing urinary tract infections in Africa: evaluation of the evidence. Antimicrobial agents and chemotherapy 2013;AAC. 00359–00313
    [Google Scholar]
  162. Randrianirina F, Soares JL, Carod JF, Ratsima E, Thonnier V et al. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in Antananarivo, Madagascar. J Antimicrob Chemother 2007;59:309–312 [CrossRef][PubMed]
    [Google Scholar]
  163. Foad MF. Phenotypic Detection and Antimicrobial susceptibility Profile of ESBL, AmpC and Carbapenemase producing Gram-negative isolates from Outpatient clinic specimens. Int J Curr Microbiol Appl Sci 2016;5:740–752 [CrossRef]
    [Google Scholar]
  164. Mashaly GE-S. Activity of fosfomycin in extended-spectrum beta-lactamases producing klebsiella pneumonae from hospital acquired urinary tract infections. Open J Med Microbiol 2016;06:104–111 [CrossRef]
    [Google Scholar]
  165. Brink AJ, Coetzee J, Clay CG, Sithole S, Richards GA et al. Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa. J Clin Microbiol 2012;50:525–527 [CrossRef][PubMed]
    [Google Scholar]
  166. Kresken M, Pfeifer Y, Hafner D, Wresch R, Körber-Irrgang B et al. Occurrence of multidrug resistance to oral antibiotics among Escherichia coli urine isolates from outpatient departments in Germany: extended-spectrum β-lactamases and the role of fosfomycin. Int J Antimicrob Agents 2014;44:295–300 [CrossRef][PubMed]
    [Google Scholar]
  167. Schmiemann G, Gágyor I, Hummers-Pradier E, Bleidorn J. Resistance profiles of urinary tract infections in general practice-an observational study. BMC Urol 2012;12:33 [CrossRef][PubMed]
    [Google Scholar]
  168. Kaase M, Szabados F, Anders A, Gatermann SG. Fosfomycin susceptibility in carbapenem-resistant Enterobacteriaceae from Germany. J Clin Microbiol 2014;52:1893–1897 [CrossRef][PubMed]
    [Google Scholar]
  169. Allerberger F, Klare I. In-vitro activity of fosfomycin against vancomycin-resistant enterococci. J Antimicrob Chemother 1999;43:211–217 [CrossRef][PubMed]
    [Google Scholar]
  170. Neuzillet Y, Naber KG, Schito G, Gualco L, Botto H. French results of the ARESC study: clinical aspects and epidemiology of antimicrobial resistance in female patients with cystitis. Implications for empiric therapy. Med Mal Infect 2012;42:66–75 [CrossRef][PubMed]
    [Google Scholar]
  171. Martin D, Fougnot S, Grobost F, Thibaut-Jovelin S, Ballereau F et al. Prevalence of extended-spectrum beta-lactamase producing Escherichia coli in community-onset urinary tract infections in France in 2013. J Infect 2016;72:201–206 [CrossRef][PubMed]
    [Google Scholar]
  172. Chiquet C, Maurin M, Altayrac J, Aptel F, Boisset S et al. Correlation between clinical data and antibiotic resistance in coagulase-negative Staphylococcus species isolated from 68 patients with acute post-cataract endophthalmitis. Clin Microbiol Infect 2015;21:592.e1–59592 [CrossRef][PubMed]
    [Google Scholar]
  173. Oteo J, Bautista V, Lara N, Cuevas O, Arroyo M et al. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother 2010;65:2459–2463 [CrossRef][PubMed]
    [Google Scholar]
  174. Oteo J, Orden B, Bautista V, Cuevas O, Arroyo M et al. CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother 2009;64:712–717 [CrossRef][PubMed]
    [Google Scholar]
  175. Briongos-Figuero LS, Gómez-Traveso T, Bachiller-Luque P, Domínguez-Gil González M, Gómez-Nieto A et al. Epidemiology, risk factors and comorbidity for urinary tract infections caused by extended-spectrum beta-lactamase (ESBL)-producing enterobacteria. Int J Clin Pract 2012;66:891–896 [CrossRef][PubMed]
    [Google Scholar]
  176. Kamenski G, Wagner G, Zehetmayer S, Fink W, Spiegel W et al. Antibacterial resistances in uncomplicated urinary tract infections in women: ECO·SENS II data from primary health care in Austria. BMC Infect Dis 2012;12:222 [CrossRef][PubMed]
    [Google Scholar]
  177. Passadouro R, Fonseca R, Figueiredo F, Lopes A, Fernandes C. [Evaluation of the antimicrobial susceptibility of community-acquired urinary tract infection]. Acta Med Port 2014;27:737–742[PubMed]
    [Google Scholar]
  178. den Heijer CD, Donker GA, Maes J, Stobberingh EE. Antibiotic susceptibility of unselected uropathogenic Escherichia coli from female Dutch general practice patients: a comparison of two surveys with a 5 year interval. J Antimicrob Chemother 2010;65:2128–2133 [CrossRef][PubMed]
    [Google Scholar]
  179. Choudhury S, Yeng JL, Krishnan PU. In vitro susceptibilities of clinical isolates of carbapenemase-producing Enterobacteriaceae to fosfomycin and tigecycline. Clin Microbiol Infect 2015;21:e75e76 [CrossRef][PubMed]
    [Google Scholar]
  180. Mirakhur A, Gallagher MJ, Ledson MJ, Hart CA, Walshaw MJ. Fosfomycin therapy for multiresistant Pseudomonas aeruginosa in cystic fibrosis. J Cyst Fibros 2003;2:19–24 [CrossRef][PubMed]
    [Google Scholar]
  181. Chislett RJ, White G, Hills T, Turner DP. Fosfomycin susceptibility among extended-spectrum-beta-lactamase-producing Escherichia coli in Nottingham, UK. J Antimicrob Chemother 2010;65:1076–1077 [CrossRef][PubMed]
    [Google Scholar]
  182. Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J et al. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 2011;37:415–419 [CrossRef][PubMed]
    [Google Scholar]
  183. Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Kapaskelis A et al. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. Int J Antimicrob Agents 2010;35:497–499 [CrossRef][PubMed]
    [Google Scholar]
  184. Maraki S, Samonis G, Rafailidis PI, Vouloumanou EK, Mavromanolakis E et al. Susceptibility of urinary tract bacteria to fosfomycin. Antimicrob Agents Chemother 2009;53:4508–4510 [CrossRef][PubMed]
    [Google Scholar]
  185. Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Mavromanolakis E et al. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int J Antimicrob Agents 2010;35:240–243 [CrossRef][PubMed]
    [Google Scholar]
  186. Meier S, Weber R, Zbinden R, Ruef C, Hasse B. Extended-spectrum β-lactamase-producing gram-negative pathogens in community-acquired urinary tract infections: an increasing challenge for antimicrobial therapy. Infection 2011;39:333–340 [CrossRef]
    [Google Scholar]
  187. Bonkat G, Müller G, Braissant O, Frei R, Tschudin-Suter S et al. Increasing prevalence of ciprofloxacin resistance in extended-spectrum-β-lactamase-producing Escherichia coli urinary isolates. World J Urol 2013;31:1427–1432 [CrossRef][PubMed]
    [Google Scholar]
  188. Bartoloni A, Sennati S, di Maggio T, Mantella A, Riccobono E et al. Antimicrobial susceptibility and emerging resistance determinants (blaCTX-M, rmtB, fosA3) in clinical isolates from urinary tract infections in the Bolivian Chaco. Int J Infect Dis 2016;43:1–6 [CrossRef][PubMed]
    [Google Scholar]
  189. Östholm Balkhed Å, Tärnberg M, Monstein HJ, Hällgren A, Hanberger H et al. High frequency of co-resistance in CTX-M-producing Escherichia coli to non-beta-lactam antibiotics, with the exceptions of amikacin, nitrofurantoin, colistin, tigecycline, and fosfomycin, in a county of Sweden. Scand J Infect Dis 2013;45:271–278 [CrossRef][PubMed]
    [Google Scholar]
  190. Titelman E, Iversen A, Kahlmeter G, Giske CG. Antimicrobial susceptibility to parenteral and oral agents in a largely polyclonal collection of CTX-M-14 and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. APMIS 2011;119:853–863 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000874
Loading
/content/journal/jmm/10.1099/jmm.0.000874
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error