1887

Abstract

Purpose. A dramatic increase in OXA-48 β-lactamase was observed recently not only in large hospital centres, but also in smaller suburban hospital centres in geographic areas bordering Croatia. The aim of the study was to analyse the epidemiology, the mechanisms of antibiotic resistance and the routes of spread of OXA-48 carbapenemase in Croatia.

Methods. Carbapenemase and other β-lactamase and fluoroquinolone resistance genes were detected by PCR and sequencing. Whole-genome sequencing (WGS) was performed on five representative isolates. The isolates were genotyped by PFGE.

Results. Forty-eight isolates positive for OXA-48, collected from seven hospital centres in Croatia from May 2016 to May 2017, were analysed (40 Klebsiella pneumoniae, 5 Enterobacter cloacae, 2 Escherichia coli and one Citrobacter freundii). Thirty-three isolates were ESBL positive and harboured group 1 CTX-M 1 β-lactamases. In addition to the β-lactam resistance genes detected by PCR (bla SHV-1, bla OXA-48 and bla OXA-1), WGS of five representative isolates revealed the presence of genes encoding aminoglycoside resistance, aadA2 and aph3-Ia, fluoroquinolone resistance determinants aac(6)Ib-c, oqxA and oqxB, the sulfonamide resistance gene sul1, and fosA (fosfomycin resistance). IncL plasmid was found in all isolates. Two K. pneumoniae isolates belonged to ST16, two E. cloacae to ST66 and E. coli to ST354. K. pneumoniae isolates were allocated to five clusters by PFGE which occured in different hospitals, indicating epidemic spread.

Conclusions. The OXA-48-positive organisms found in this study showed wide variability in antibiotic susceptibility, β-lactamase content and PFGE banding patterns. This study revealed a switch from the predominance of VIM-1 in 2012–2013 to that of OXA-48 in the 2015 to 2017.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000777
2018-06-21
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/8/1031.html?itemId=/content/journal/jmm/10.1099/jmm.0.000777&mimeType=html&fmt=ahah

References

  1. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 2007;20:440–458 [CrossRef][PubMed]
    [Google Scholar]
  2. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y et al. The European Network on carbapenemases, rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 2012;18:413–431
    [Google Scholar]
  3. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004;48:15–22 [CrossRef][PubMed]
    [Google Scholar]
  4. Gülmez D, Woodford N, Palepou MF, Mushtaq S, Metan G et al. Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from Turkey with OXA-48-like carbapenemases and outer membrane protein loss. Int J Antimicrob Agents 2008;31:523–526 [CrossRef][PubMed]
    [Google Scholar]
  5. Aktaş Z, Kayacan CB, Schneider I, Can B, Midilli K et al. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy 2008;54:101–106 [CrossRef][PubMed]
    [Google Scholar]
  6. Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S et al. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother 2008;52:2950–2954 [CrossRef][PubMed]
    [Google Scholar]
  7. Nazik H, Aydin S, Albayrak R, Bilgi EA, Yildiz I et al. Detection and spread of oxa-48-producing Klebsiella oxytoca isolates in Istanbul, Turkey. Southeast Asian J Trop Med Public Health 2014;45:123–129[PubMed]
    [Google Scholar]
  8. Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR et al. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother 2012;56:2125–2128 [CrossRef][PubMed]
    [Google Scholar]
  9. Manageiro V, Ferreira E, Pinto M, Caniça M. First description of OXA-48 carbapenemase harbored by Escherichia coli and Enterobacter cloacae from a single patient in Portugal. Antimicrob Agents Chemother 2014;58:7613–7614 [CrossRef][PubMed]
    [Google Scholar]
  10. Timofte D, Panzaru CV, Maciuca IE, Dan M, Mare AD et al. Active surveillance scheme in three Romanian hospitals reveals a high prevalence and variety of carbapenamase-producing Gram-negative bacteria: a pilot study, December 2014 to May 2015. Euro Surveill 2016;21:30262 [CrossRef][PubMed]
    [Google Scholar]
  11. Tada T, Tsuchiya M, Shimada K, Nga TTT, Thu LTA et al. Dissemination of carbapenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA Methylases (RmtB and RmtC) in Vietnam. BMC Infect Dis 2017;17:467 [CrossRef][PubMed]
    [Google Scholar]
  12. Giani T, Conte V, di Pilato V, Aschbacher R, Weber C et al. Escherichia coli from Italy producing OXA-48 carbapenemase encoded by a novel Tn1999 transposon derivative. Antimicrob Agents Chemother 2012;56:2211–2213 [CrossRef][PubMed]
    [Google Scholar]
  13. Cuzon G, Ouanich J, Gondret R, Naas T, Nordmann P. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob Agents Chemother 2011;55:2420–2423 [CrossRef][PubMed]
    [Google Scholar]
  14. Mazzariol A, Bošnjak Z, Ballarini P, Budimir A, Bedenić B et al. NDM-1-producing Klebsiella pneumoniae, Croatia. Emerg Infect Dis 2012;18:532–534 [CrossRef][PubMed]
    [Google Scholar]
  15. Bedenić B, Mazzariol A, Plečko V, Bošnjak Z, Barl P et al. First report of KPC-producing Klebsiella pneumoniae in Croatia. J Chemother 2012;24:237–239 [CrossRef][PubMed]
    [Google Scholar]
  16. Zujić Atalić V, Bedenić B, Kocsis E, Mazzariol A, Sardelić S et al. Diversity of carbapenemases in clinical isolates of Enterobacteriaceae in Croatia–the results of a multicentre study. Clin Microbiol Infect 2014;20:O894–O903 [CrossRef][PubMed]
    [Google Scholar]
  17. Bedenić B, Sardelić S, Luxner J, Bošnjak Z, Varda-Brkić D et al. Molecular characterization of class b carbapenemases in advanced stage of dissemination and emergence of class d carbapenemases in Enterobacteriaceae from Croatia. Infect Genet Evol 2016;43:74–82 [CrossRef]
    [Google Scholar]
  18. Khajuria A, Praharaj AK, Kumar M, Grover N. Emergence of Escherichia coli, co-producing NDM-1 and OXA-48 carbapenemases, in urinary isolates, at a tertiary care centre at central India. J Clin Diagn Res 2014;8:DC01–DC04 [CrossRef][PubMed]
    [Google Scholar]
  19. Novak A, Goic-Barisic I, Andrasevic AT, Butic I, Radic M et al. Monoclonal outbreak of VIM-1-carbapenemase-producing Enterobacter cloacae in intensive care unit, University Hospital Centre Split, Croatia. Microb Drug Resist 2014;20:399–403 [CrossRef][PubMed]
    [Google Scholar]
  20. Jelić M, Škrlin J, Bejuk D, Košćak I, Butić I et al. Characterization of isolates associated with emergence of OXA-48-producing Klebsiella pneumoniae in Croatia. Microb Drug Resist 2017; [CrossRef][PubMed]
    [Google Scholar]
  21. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, 26th ed. CLSI supplement M100-S Wayne, PA: CLSI; 2016
    [Google Scholar]
  22. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268–281 [CrossRef][PubMed]
    [Google Scholar]
  23. Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum β-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988;10:867–878 [CrossRef][PubMed]
    [Google Scholar]
  24. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005;43:4163–4167 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2005;41:4623–4629 [CrossRef][PubMed]
    [Google Scholar]
  26. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One 2015;10:e0123690 [CrossRef][PubMed]
    [Google Scholar]
  27. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 2009;47:1631–1639 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim SY, Hong SG, Moland ES, Thomson KS. Convenient test using a combination of chelating agents for detection of metallo-β-lactamases in the clinical laboratory. J Clin Microbiol 2007;45:2798–2801 [CrossRef][PubMed]
    [Google Scholar]
  29. Nüesch-Inderbinen MT, Hächler H, Kayser FH. Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis 1996;15:398–402 [CrossRef][PubMed]
    [Google Scholar]
  30. Arlet G, Brami G, Décrè D, Flippo A, Gaillot O et al. Molecular characterisation by PCR-restriction fragment length polymorphism of TEM β-lactamases. FEMS Microbiol Lett 1995;134:203–208[PubMed]
    [Google Scholar]
  31. Woodford N, Ward ME, Kaufmann ME, Turton J, Fagan EJ et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J Antimicrob Chemother 2004;54:735–743 [CrossRef][PubMed]
    [Google Scholar]
  32. Pagani L, Mantengoli E, Migliavacca R, Nucleo E, Pollini S et al. Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β-lactamase in Northern Italy. J Clin Microbiol 2004;42:2523–2529 [CrossRef][PubMed]
    [Google Scholar]
  33. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 2006;57:154–155 [CrossRef][PubMed]
    [Google Scholar]
  34. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002;40:2153–2162 [CrossRef][PubMed]
    [Google Scholar]
  35. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011;70:119–123 [CrossRef][PubMed]
    [Google Scholar]
  36. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006;6:629–640 [CrossRef][PubMed]
    [Google Scholar]
  37. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16:161–168 [CrossRef][PubMed]
    [Google Scholar]
  38. Cannatelli A, Giani T, D'Andrea MM, Di Pilato V, Arena F et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother 2014;58:5696–5703 [CrossRef][PubMed]
    [Google Scholar]
  39. Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL et al. Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 2002;209:161–168[PubMed]
    [Google Scholar]
  40. Elwell LP, Falkow S. The characterization of R plasmids and the detection of plasmid-specified genes. In Lorian V. (editor) Antibiotics in Laboratory Medicine, 2nd ed. Baltimore MD: Williams and Wilkins; 1986; pp.683–721
    [Google Scholar]
  41. Choi KH, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 2006;64:391–397 [CrossRef][PubMed]
    [Google Scholar]
  42. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  43. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005;63:219–228 [CrossRef][PubMed]
    [Google Scholar]
  44. Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One 2015;10:e0123063 [CrossRef][PubMed]
    [Google Scholar]
  45. Kaufman ME. Pulsed-field gel electrophoresis. In Woodfor N, Johnsons A. (editors) Molecular Bacteriology. Protocols and Clinical Applications, 1st ed. New York: Humana Press Inc. Totowa; 1998; pp.33–51
    [Google Scholar]
  46. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233–2239[PubMed]
    [Google Scholar]
  47. Osterblad M, Hakanen AJ, Jalava J. Evaluation of the Carba NP test for carbapenemase detection. Antimicrob Agents Chemother 2014;58:7553–7556 [CrossRef][PubMed]
    [Google Scholar]
  48. Thiolas A, Bollet C, La Scola B, Raoult D, Pagès JM. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient. Antimicrob Agents Chemother 2005;49:1354–1358 [CrossRef][PubMed]
    [Google Scholar]
  49. Bedenić B, Vranić-Ladavac M, Venditti C, Tambić-Andrašević A, Barišić N et al. Emergence of colistin resistance in Enterobacter aerogenes from Croatia. J Chemother 2018;30:120–123 [CrossRef][PubMed]
    [Google Scholar]
  50. Cannatelli A, D'Andrea MM, Giani T, di Pilato V, Arena F et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type of carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother 2013;57:5521–5526 [CrossRef][PubMed]
    [Google Scholar]
  51. Huang TD, Bogaerts P, Berhin C, Hoebeke M, Bauraing C et al. Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of a MCR-1 producer through a multicentric study among hospital-based and private laboratories in Belgium from September to November 2015. Euro Surveill 2017;22:30530 [CrossRef][PubMed]
    [Google Scholar]
  52. Mansour W, Haenni M, Saras E, Grami R, Mani Y et al. Outbreak of colistin-resistant carbapenemase-producing Klebsiella pneumoniae in Tunisia. J Glob Antimicrob Resist 2017;10:88–94 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000777
Loading
/content/journal/jmm/10.1099/jmm.0.000777
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error