1887

Abstract

Purpose. The aim of this study was to evaluate the in vitro activity of double-carbapenem combinations against OXA-48-producing Klebsiella pneumoniae clinical isolates.

Methodology. Double combinations of ertapenem, meropenem and imipenem were evaluated for synergy and bactericidal activity using the time–kill methodology. All antibiotics were tested at 10 mg l and at a sub-inhibitory concentration of 0.5× minimum inhibitory concentration (MIC) for isolates with a carbapenem MIC≤8 mg l. Synergy was defined as a ≥2log10 colony-forming units (c.f.u.) ml decrease of viable colonies at 24 h compared to the most active carbapenem alone.

Results. Ten distinct K. pneumoniae clinical isolates were tested. All carried bla OXA-48 and bla CTX-M-15, and exhibited an MIC range of 64–128, 4–32 and 1–32 mg l for ertapenem, meropenem and imipenem, respectively. Out of 48 isolate-combinations, synergy was observed in 9 (18.8 %) and cidal activity was observed in 13 (27.1 %). In vitro synergistic activity was noted for 5 out of 29 (17.2 %) ertapenem-, 6 out of 29 (20.7 %) meropenem- and 7 out of 38 (18.4 %) imipenem-containing combinations. No combination exhibited antagonism. Bactericidal activity was observed in 7 (24.1 %) ertapenem-, 8 (27.6 %) meropenem- and 11 (28.9 %) imipenem-containing combinations. Among the sub-inhibitory concentration combinations, three (15 %) ertapenem-, four (20 %) meropenem- and three (15 %) imipenem-containing ones showed synergistic interaction.

Conclusion. Dual combinations of carbapenems, including those containing sub-inhibitory concentrations of antibiotics, were synergistic against multidrug-resistant (MDR) and extensively drug-resistant (XDR) K. pneumoniae isolates harbouring bla OXA-48.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000725
2018-03-21
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/5/662.html?itemId=/content/journal/jmm/10.1099/jmm.0.000725&mimeType=html&fmt=ahah

References

  1. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004;48:15–22 [CrossRef][PubMed]
    [Google Scholar]
  2. Dortet L, Oueslati S, Jeannot K, Tandé D, Naas T et al. Genetic and biochemical characterization of OXA-405, an OXA-48-type extended-spectrum β-lactamase without significant carbapenemase activity. Antimicrob Agents Chemother 2015;59:3823–3828 [CrossRef][PubMed]
    [Google Scholar]
  3. Samuelsen Ø, Hansen F, Aasnæs B, Hasman H, Lund BA et al. Dissemination and characteristics of a novel plasmid-encoded carbapenem-hydrolyzing class D β-lactamase, OXA-436, found in isolates from four patients at six different hospitals in Denmark. Antimicrob Agents Chemother 2017;62:e01260-17 [CrossRef]
    [Google Scholar]
  4. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016;7:895 [CrossRef][PubMed]
    [Google Scholar]
  5. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012;67:1597–1606 [CrossRef][PubMed]
    [Google Scholar]
  6. Docquier JD, Calderone V, de Luca F, Benvenuti M, Giuliani F et al. Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. Chem Biol 2009;16:540–547 [CrossRef][PubMed]
    [Google Scholar]
  7. Navarro-San Francisco C, Mora-Rillo M, Romero-Gómez MP, Moreno-Ramos F, Rico-Nieto A et al. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: a major clinical challenge. Clin Microbiol Infect 2013;19:E72E79 [CrossRef][PubMed]
    [Google Scholar]
  8. Paño-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco C, Gómez-Gil R, Mora-Rillo M et al. Infections caused by OXA-48-producing Klebsiella pneumoniae in a tertiary hospital in Spain in the setting of a prolonged, hospital-wide outbreak. J Antimicrob Chemother 2013;68:89–96 [CrossRef][PubMed]
    [Google Scholar]
  9. Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2014;20:862–872 [CrossRef][PubMed]
    [Google Scholar]
  10. Galani I, Anagnostoulis G, Chatzikonstantinou M, Petrikkos G, Souli M. Emergence of Klebsiella pneumoniae co-producing OXA-48, CTX-M-15, and ArmA in Greece. Clin Microbiol Infect 2016;22:898–899 [CrossRef][PubMed]
    [Google Scholar]
  11. The European Committee on Antimicrobial Susceptibility Testing 2018; Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0. www.eucast.org
  12. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268–281 [CrossRef][PubMed]
    [Google Scholar]
  13. Nicolau DP. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin Infect Dis 2008;47:S32–S40 [CrossRef][PubMed]
    [Google Scholar]
  14. Rodloff AC, Goldstein EJ, Torres A. Two decades of imipenem therapy. J Antimicrob Chemother 2006;58:916–929 [CrossRef][PubMed]
    [Google Scholar]
  15. Nix DE, Majumdar AK, Dinubile MJ. Pharmacokinetics and pharmacodynamics of ertapenem: an overview for clinicians. J Antimicrob Chemother 2004;53:ii23–ii28 [CrossRef][PubMed]
    [Google Scholar]
  16. Amsterdam D. Susceptibility testing of antimicrobials in liquid media. In Lorian V. (editor) Antibiotics in Laboratory Medicine, 3rd ed. Baltimore: The Williams and Wilkins Co; 1991; pp.53–105
    [Google Scholar]
  17. Eliopoulos G, Moellering RC. Antimicrobial combinations. In Lorian V. (editor) Antibiotics in Laboratory Medicine, 3rd ed. Baltimore: The Williams and Wilkins Co; 1991; pp.432–492
    [Google Scholar]
  18. Poirel L, Kieffer N, Nordmann P. In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2016;71:156–161 [CrossRef][PubMed]
    [Google Scholar]
  19. Mimoz O, Grégoire N, Poirel L, Marliat M, Couet W et al. Broad-spectrum β-lactam antibiotics for treating experimental peritonitis in mice due to Klebsiella pneumoniae producing the carbapenemase OXA-48. Antimicrob Agents Chemother 2012;56:2759–2760 [CrossRef][PubMed]
    [Google Scholar]
  20. Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. Efficacy of humanized carbapenem and ceftazidime regimens against Enterobacteriaceae producing OXA-48 carbapenemase in a murine infection model. Antimicrob Agents Chemother 2014;58:1678–1683 [CrossRef][PubMed]
    [Google Scholar]
  21. Mathers AJ, Hazen KC, Carroll J, Yeh AJ, Cox HL et al. First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the "menace" arrives in the new world. J Clin Microbiol 2013;51:680–683 [CrossRef][PubMed]
    [Google Scholar]
  22. de Jonge BL, Karlowsky JA, Kazmierczak KM, Biedenbach DJ, Sahm DF et al. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob Agents Chemother 2016;60:3163–3169 [CrossRef][PubMed]
    [Google Scholar]
  23. Humphries RM, Hemarajata P. Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3. Antimicrob Agents Chemother 2017;61:e00537-17 [CrossRef][PubMed]
    [Google Scholar]
  24. Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2011;55:3002–3004 [CrossRef][PubMed]
    [Google Scholar]
  25. Oliva A, D'Abramo A, D'Agostino C, Iannetta M, Mascellino MT et al. Synergistic activity and effectiveness of a double-carbapenem regimen in pandrug-resistant Klebsiella pneumoniae bloodstream infections. J Antimicrob Chemother 2014;69:1718–1720 [CrossRef][PubMed]
    [Google Scholar]
  26. Souli M, Karaiskos I, Masgala A, Galani L, Barmpouti E et al. Double-carbapenem combination as salvage therapy for untreatable infections by KPC-2-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 2017;36:1305–1315 [CrossRef][PubMed]
    [Google Scholar]
  27. de Pascale G, Martucci G, Montini L, Panarello G, Cutuli SL et al. Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case-control study. Crit Care 2017;21:173 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000725
Loading
/content/journal/jmm/10.1099/jmm.0.000725
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error