1887

Abstract

Purpose. To determine the predominant strains of Bordetella pertussis in Greece during 2010–2015.

Methodology. Infants and children (n=1150) (15 days to 14 years) of Greek, Roma and immigrant origin with different vaccination statuses were hospitalized in Athens, Greece with suspected pertussis infection. IS481/IS1001 real-time PCR confirmed Bordetella spp./B. pertussis infection in 300 samples. A subset of samples (n=153) were analysed by multi-locus variable number tandem repeat analysis (MLVA) and (n=25) by sequence-based typing of the toxin promotor region (ptxP) on DNA extracted from clinical specimens.

Results/Key findings. A complete MLVA profile was determined in 66 out of 153 samples; the B. pertussis MLVA type 27 (n=55) was the dominant genotype and all tested samples (n=25) expressed the ptxP3 genotype. The vaccine coverage in the Greek population was 90 %; however, the study population expressed complete coverage in 2 out of 264 infants (0–11 months) and in 20 out of 36 children (1–14 years). Roma and immigrant minorities represent 7 % of the Greek population, but make up 50 % of the study population, indicating a low vaccine coverage among these groups.

Conclusions. The B. pertussis MT27 and ptxP3 genotype is dominant in Greek, Roma and immigrant infants and children hospitalized in Greece. Thus, the predominant MLVA genotype in Greece is similar to other countries using acellular vaccines.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000688
2018-02-02
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/3/400.html?itemId=/content/journal/jmm/10.1099/jmm.0.000688&mimeType=html&fmt=ahah

References

  1. Mooi FR, Van Der Maas NA, de Melker HE. Pertussis resurgence: waning immunity and pathogen adaptation – two sides of the same coin. Epidemiol Infect 2014;142:685–694 [CrossRef][PubMed]
    [Google Scholar]
  2. de Greeff SC, Mooi FR, Westerhof A, Verbakel JM, Peeters MF et al. Pertussis disease burden in the household: how to protect young infants. Clin Infect Dis 2010;50:1339–1345 [CrossRef][PubMed]
    [Google Scholar]
  3. Theodoridou M, Dargenta G, Aptouramani M, Papastergiou P, Katsiaflaka A et al. Pertussis epidemiology in Greece and emerging risk groups during the vaccination era (1980–2008). Adv Prev Med 2012;2012:1–6 [CrossRef]
    [Google Scholar]
  4. Wendelboe AM, Van Rie A, Salmaso S, Englund JA. Duration of immunity against pertussis after natural infection or vaccination. Pediatr Infect Dis J 2005;24:S58–S61 [CrossRef][PubMed]
    [Google Scholar]
  5. Georgakopoulou T.Hellenic Center for Disease Control & Prevention, Ministry of Health, Greece 2011; Vaccine-preventable diseases: surveillance systems in Greece and epidemiological data. Available fromwww.keelpno.gr/en-us/home.aspx
  6. Panagiotopoulos T, Papamichail D, Stavrou D, Laggas D, Gavana M. 2012; National study of vaccination coverage in children in Greece. Available fromwww.nsph.gr/files/011_Ygeias_Paidiou/Ereunes/ekthesi_emvolia_2012.pdf
  7. Greece Demographics Profile 2017; Index mundi. www.indexmundi.com/greece/demographics_profile.html
  8. Georgakopoulou T, Menegas D, Vernardaki A, Petridou E, Spoulou V. Epidemiology of pertussis in a tertiary pediatric hospital in Athens, 2010– 2012. 31st Annual Meeting of the European Society for Paediatric Infectious Diseases, Milan, Italy, May 28-June 1, 2013, Abstract no. 179. http://espid.kenes.com/Documents/ESPID2013%20ABSTRACTS.pdf
  9. Poland GA. Pertussis outbreaks and pertussis vaccines: new insights, new concerns, new recommendations?. Vaccine 2012;30:6957–6959 [CrossRef][PubMed]
    [Google Scholar]
  10. Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 2014;111:787–792 [CrossRef][PubMed]
    [Google Scholar]
  11. Esposito S, Principi N.European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Vaccine Study Group (EVASG) Immunization against pertussis in adolescents and adults. Clin Microbiol Infect 2016;22:S89–S95 [CrossRef][PubMed]
    [Google Scholar]
  12. Litt DJ, Jauneikaite E, Tchipeva D, Harrison TG, Fry NK. Direct molecular typing of Bordetella pertussis from clinical specimens submitted for diagnostic quantitative (real-time) PCR. J Med Microbiol 2012;61:1662–1668 [CrossRef][PubMed]
    [Google Scholar]
  13. Schouls LM, van der Heide HG, Vauterin L, Vauterin P, Mooi FR. Multiple-locus variable-number tandem repeat analysis of Dutch Bordetella pertussis strains reveals rapid genetic changes with clonal expansion during the late 1990s. J Bacteriol 2004;186:5496–5505 [CrossRef][PubMed]
    [Google Scholar]
  14. National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport. 2017; MLVA: Bordetella pertussis Available fromwww.mlva.net/bpertussis/default.asp
  15. Petersen RF, Dalby T, Dragsted DM, Mooi F, Lambertsen L. Temporal trends in Bordetella pertussis populations, Denmark, 1949–2010. Emerg Infect Dis 2012;18:767–774 [CrossRef][PubMed]
    [Google Scholar]
  16. van Gent M, Heuvelman CJ, van der Heide HG, Hallander HO, Advani A et al. Analysis of Bordetella pertussis clinical isolates circulating in European countries during the period 1998–2012. Eur J Clin Microbiol Infect Dis 2015;34:821–830 [CrossRef][PubMed]
    [Google Scholar]
  17. Lžičařová D, Zavadilová J, Musílek M, Jandová Z, Křížová P et al. Multiple-locus variable number tandem repeat analysis of Bordetella pertussis strains collected in the Czech Republic in 1967–2015: spread of a variant adapted to the population with a high vaccination coverage. Epidemiol Mikrobiol Imunol 2016;65:102–111[PubMed]
    [Google Scholar]
  18. Octavia S, Sintchenko V, Gilbert GL, Lawrence A, Keil AD et al. Newly emerging clones of Bordetella pertussis carrying prn2 and ptxP3 alleles implicated in Australian pertussis epidemic in 2008–2010. J Infect Dis 2012;205:1220–1224 [CrossRef][PubMed]
    [Google Scholar]
  19. Miyaji Y, Otsuka N, Toyoizumi-Ajisaka H, Shibayama K, Kamachi K. Genetic analysis of Bordetella pertussis isolates from the 2008– 2010 pertussis epidemic in Japan. PLoS One 2013;8:e77165 [CrossRef][PubMed]
    [Google Scholar]
  20. Schmidtke AJ, Boney KO, Martin SW, Skoff TH, Tondella ML et al. Population diversity among Bordetella pertussis isolates, United States, 1935–2009. Emerg Infect Dis 2012;18:1248–1255 [CrossRef][PubMed]
    [Google Scholar]
  21. Mosiej E, Krysztopa-Grzybowska K, Polak M, Prygiel M, Lutyńska A. Multi-locus variable-number tandem repeat analysis of Bordetella pertussis isolates circulating in Poland in the period 1959–2013. J Med Microbiol 2017;66:753–761 [CrossRef][PubMed]
    [Google Scholar]
  22. Galit SR, Otsuka N, Furuse Y, Almonia DJ, Sombrero LT et al. Molecular epidemiology of Bordetella pertussis in the Philippines in 2012–2014. Int J Infect Dis 2015;35:24–26 [CrossRef][PubMed]
    [Google Scholar]
  23. Du Q, Wang X, Liu Y, Luan Y, Zhang J et al. Direct molecular typing of Bordetella pertussis from nasopharyngeal specimens in China in 2012–2013. Eur J Clin Microbiol Infect Dis 2016;35:1211–1214 [CrossRef][PubMed]
    [Google Scholar]
  24. Glare EM, Paton JC, Premier RR, Lawrence AJ, Nisbet IT. Analysis of a repetitive DNA sequence from Bordetella pertussis and its application to the diagnosis of pertussis using the polymerase chain reaction. J Clin Microbiol 1990;28:1982–1987[PubMed]
    [Google Scholar]
  25. van der Zee A, Agterberg C, Peeters M, Schellekens J, Mooi FR. Polymerase chain reaction assay for pertussis: simultaneous detection and discrimination of Bordetella pertussis and Bordetella parapertussis. J Clin Microbiol 1993;31:2134–2140[PubMed]
    [Google Scholar]
  26. Birkebaek NH, Heron I, Skjødt K. Bordetella pertussis diagnosed by polymerase chain reaction. APMIS 1994;102:291–294 [CrossRef][PubMed]
    [Google Scholar]
  27. Kurniawan J, Maharjan RP, Chan WF, Reeves PR, Sintchenko V et al. Bordetella pertussis clones identified by multilocus variable-number tandem-repeat analysis. Emerg Infect Dis 2010;16:297–300 [CrossRef][PubMed]
    [Google Scholar]
  28. Simpson’s index of diversity. Comparing Partitions. www.comparingpartitions.info/ 2011
  29. Wagner B, Melzer H, Freymüller G, Stumvoll S, Rendi-Wagner P et al. Genetic variation of Bordetella pertussis in Austria. PLoS One 2015;10:e0132623 [CrossRef][PubMed]
    [Google Scholar]
  30. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003;35:32–40 [CrossRef][PubMed]
    [Google Scholar]
  31. van Amersfoorth SC, Schouls LM, van der Heide HG, Advani A, Hallander HO et al. Analysis of Bordetella pertussis populations in European countries with different vaccination policies. J Clin Microbiol 2005;43:2837–2843 [CrossRef][PubMed]
    [Google Scholar]
  32. Advani A, van der Heide HG, Hallander HO, Mooi FR. Analysis of Swedish Bordetella pertussis isolates with three typing methods: characterization of an epidemic lineage. J Microbiol Methods 2009;78:297–301 [CrossRef][PubMed]
    [Google Scholar]
  33. Litt DJ, Neal SE, Fry NK. Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. J Clin Microbiol 2009;47:680–688 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000688
Loading
/content/journal/jmm/10.1099/jmm.0.000688
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error