1887

Abstract

Purpose. Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is necessary due to the increasing frequency of severe infections in patients. The decreasing cost of next-generation sequencing enables us to obtain a comprehensive overview of genetic information in one step. The aim of this study is to demonstrate and evaluate the utility and scope of the application of web-based databases to next-generation sequenced (NGS) data.

Methodology. The whole genomes of 11 clinical Klebsiella pneumoniae isolates were sequenced using Illumina MiSeq. Selected web-based tools were used to identify a variety of genetic characteristics, such as acquired antimicrobial resistance genes, multilocus sequence types, plasmid replicons, and identify virulence factors, such as virulence genes, cps clusters, urease-nickel clusters and efflux systems.

Results. Using web-based tools hosted by the Center for Genomic Epidemiology, we detected resistance to 8 main antimicrobial groups with at least 11 acquired resistance genes. The isolates were divided into eight sequence types (ST11, 23, 37, 323, 433, 495 and 562, and a new one, ST1646). All of the isolates carried replicons of large plasmids. Capsular types, virulence factors and genes coding AcrAB and OqxAB efflux pumps were detected using BIGSdb-Kp, whereas the selected virulence genes, identified in almost all of the isolates, were detected using CLC Genomic Workbench software.

Conclusion. Applying appropriate web-based online tools to NGS data enables the rapid extraction of comprehensive information that can be used for more efficient diagnosis and treatment of patients, while data processing is free of charge, easy and time-efficient.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000624
2017-10-25
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/11/1673.html?itemId=/content/journal/jmm/10.1099/jmm.0.000624&mimeType=html&fmt=ahah

References

  1. Broberg CA, Palacios M, Miller VL. Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000Prime Rep 2014;6:64 [CrossRef][PubMed]
    [Google Scholar]
  2. Ito R, Shindo Y, Kobayashi D, Ando M, Jin W et al. Molecular epidemiological characteristics of Klebsiella pneumoniae associated with bacteremia among patients with pneumonia. J Clin Microbiol 2015;53:879–886 [CrossRef][PubMed]
    [Google Scholar]
  3. Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013;4:107–118 [CrossRef][PubMed]
    [Google Scholar]
  4. Nordmann P. Carbapenemase-producing enterobacteriaceae: overview of a major public health challenge. Med Mal Infect 2014;44:51–56 [CrossRef][PubMed]
    [Google Scholar]
  5. Paterson DL, Ko WC, von Gottberg A, Mohapatra S, Casellas JM et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum β-lactamase production in nosocomial infections. Ann Intern Med 2004;140:26–32 [CrossRef][PubMed]
    [Google Scholar]
  6. Andrade LN, Vitali L, Gaspar GG, Bellissimo-Rodrigues F, Martinez R et al. Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol 2014;52:2530–2535 [CrossRef][PubMed]
    [Google Scholar]
  7. Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 2009;4:e4982 [CrossRef][PubMed]
    [Google Scholar]
  8. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014;52:1501–1510 [CrossRef][PubMed]
    [Google Scholar]
  9. Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl J et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 2013;18:20380 [CrossRef][PubMed]
    [Google Scholar]
  10. Ranjbar R, Karami A, Farshad S, Giammanco GM, Mammina C. Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol 2014;37:1–15[PubMed]
    [Google Scholar]
  11. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 2011;6:e22751 [CrossRef][PubMed]
    [Google Scholar]
  12. Lefterova MI, Suarez CJ, Banaei N, Pinsky BA. Next-generation sequencing for infectious disease diagnosis and management: a report of the association for molecular pathology. J Mol Diagn 2015;17:623–634 [CrossRef][PubMed]
    [Google Scholar]
  13. Weinstock GM. Genomic approaches to studying the human microbiota. Nature 2012;489:250–256 [CrossRef][PubMed]
    [Google Scholar]
  14. Joensen KG, Engsbro ALØ, Lukjancenko O, Kaas RS, Lund O et al. Evaluating next-generation sequencing for direct clinical diagnostics in diarrhoeal disease. Eur J Clin Microbiol Infect Dis 2017;36:1325–1338 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhou K, Lokate M, Deurenberg RH, Tepper M, Arends JP et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep 2016;6:20840 [CrossRef][PubMed]
    [Google Scholar]
  16. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 2017;243:16–24 [CrossRef][PubMed]
    [Google Scholar]
  17. Punina NV, Makridakis NM, Remnev MA, Topunov AF. Whole-genome sequencing targets drug-resistant bacterial infections. Hum Genomics 2015;9:19 [CrossRef][PubMed]
    [Google Scholar]
  18. Ho CC, Yuen KY, Lau SK, Woo PC. Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104:H4 outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol 2011;49:3714–3716 [CrossRef][PubMed]
    [Google Scholar]
  19. Pritchard L, Holden NJ, Bielaszewska M, Karch H, Toth IK. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains. PLoS One 2012;7:e34498 [CrossRef][PubMed]
    [Google Scholar]
  20. Edwards DJ, Holt KE. Beginner's guide to comparative bacterial genome analysis using next-generation sequence data. Microb Inform Exp 2013;3:2 [CrossRef][PubMed]
    [Google Scholar]
  21. Brhelova E, Kocmanova I, Racil Z, Hanslianova M, Antonova M et al. Validation of Minim typing for fast and accurate discrimination of extended-spectrum, beta-lactamase-producing Klebsiella pneumoniae isolates in tertiary care hospital. Diagn Microbiol Infect Dis 2016;86:44–49 [CrossRef][PubMed]
    [Google Scholar]
  22. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012;50:1355–1361 [CrossRef][PubMed]
    [Google Scholar]
  23. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  24. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using Plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–3903 [CrossRef][PubMed]
    [Google Scholar]
  25. Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL. The function of wzy_K1 (magA), the serotype K1 polymerase gene in Klebsiella pneumoniae cps gene cluster. J Infect Dis 2010;201:1268–1269 [CrossRef][PubMed]
    [Google Scholar]
  26. Laurence M, Hatzis C, Brash DE. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS One 2014;9:e97876 [CrossRef][PubMed]
    [Google Scholar]
  27. Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One 2011;6:e17288 [CrossRef][PubMed]
    [Google Scholar]
  28. Calistri A, Palù G. Editorial commentary: unbiased next-generation sequencing and new pathogen discovery: undeniable advantages and still-existing drawbacks. Clin Infect Dis 2015;60:889–891 [CrossRef][PubMed]
    [Google Scholar]
  29. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 2014;24:1180–1192 [CrossRef][PubMed]
    [Google Scholar]
  30. Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP et al. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 2011;79:4286–4298 [CrossRef][PubMed]
    [Google Scholar]
  31. Borozan I, Wilson S, Blanchette P, Laflamme P, Watt SN et al. CaPSID: a bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes. BMC Bioinformatics 2012;13:206 [CrossRef][PubMed]
    [Google Scholar]
  32. Kostic AD, Ojesina AI, Pedamallu CS, Jung J, Verhaak RG et al. PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nat Biotechnol 2011;29:393–396 [CrossRef][PubMed]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  35. Scaria J, Chandramouli U, Verma SK. Antibiotic resistance genes online (ARGO): a database on vancomycin and beta-lactam resistance genes. Bioinformation 2005;1:5–7 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhou CE, Smith J, Lam M, Zemla A, Dyer MD et al. MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 2007;35:D391–D394 [CrossRef][PubMed]
    [Google Scholar]
  37. Liu B, Pop M. ARDB—Antibiotic Resistance Genes Database. Nucleic Acids Res 2009;37:D443–D447 [CrossRef][PubMed]
    [Google Scholar]
  38. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57:3348–3357 [CrossRef][PubMed]
    [Google Scholar]
  39. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014;58:212–220 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhulin IB. Databases for microbiologists. J Bacteriol 2015;197:2458–2467 [CrossRef][PubMed]
    [Google Scholar]
  41. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  42. Dolejska M, Brhelova E, Dobiasova H, Krivdova J, Jurankova J et al. Dissemination of IncFII(K)-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from children in hospital paediatric oncology wards. Int J Antimicrob Agents 2012;40:510–515 [CrossRef][PubMed]
    [Google Scholar]
  43. Mansour W, Grami R, Ben Haj Khalifa A, Dahmen S, Châtre P et al. Dissemination of multidrug-resistant blaCTX-M-15/IncFIIk plasmids in Klebsiella pneumoniae isolates from hospital- and community-acquired human infections in Tunisia. Diagn Microbiol Infect Dis 2015;83:298–304 [CrossRef][PubMed]
    [Google Scholar]
  44. Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J Antimicrob Chemother 2011;66:1510–1513 [CrossRef][PubMed]
    [Google Scholar]
  45. Hasan CM, Turlej-Rogacka A, Vatopoulos AC, Giakkoupi P, Maâtallah M et al. Dissemination of blaVIM in Greece at the peak of the epidemic of 2005–2006: clonal expansion of Klebsiella pneumoniae clonal complex 147. Clin Microbiol Infect 2014;20:34–37 [CrossRef][PubMed]
    [Google Scholar]
  46. Bonura C, Giuffrè M, Aleo A, Fasciana T, Di Bernardo F et al. An update of the evolving epidemic of blaKPC carrying Klebsiella pneumoniae in Sicily, Italy, 2014: emergence of multiple non-ST258 clones. PLoS One 2015;10:e0132936 [CrossRef][PubMed]
    [Google Scholar]
  47. Ruiz E, Sáenz Y, Zarazaga M, Rocha-Gracia R, Martínez-Martínez L et al. qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J Antimicrob Chemother 2012;67:886–897 [CrossRef][PubMed]
    [Google Scholar]
  48. Ruiz E, Ocampo-Sosa AA, Rezusta A, Revillo MJ, Román E et al. Acquisition of carbapenem resistance in multiresistant Klebsiella pneumoniae strains harbouring blaCTX-M-15, qnrS1 and aac(6')-Ib-cr genes. J Med Microbiol 2012;61:672–677 [CrossRef][PubMed]
    [Google Scholar]
  49. Zhang X, Li X, Wang M, Yue H, Li P et al. Outbreak of NDM-1-producing Klebsiella pneumoniae causing neonatal infection in a teaching hospital in Mainland China. Antimicrob Agents Chemother 2015;59:4349–4351 [CrossRef][PubMed]
    [Google Scholar]
  50. Li B, Hu Y, Wang Q, Yi Y, Woo PC et al. Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China. PLoS One 2013;8:e75805 [CrossRef][PubMed]
    [Google Scholar]
  51. Wang Q, Li B, Tsang AK, Yi Y, Woo PC et al. Genotypic analysis of Klebsiella pneumoniae isolates in a Beijing hospital reveals high genetic diversity and clonal population structure of drug-resistant isolates. PLoS One 2013;8:e57091 [CrossRef][PubMed]
    [Google Scholar]
  52. Yan JJ, Wang MC, Zheng PX, Tsai LH, Wu JJ. Associations of the major international high-risk resistant clones and virulent clones with specific ompK36 allele groups in Klebsiella pneumoniae in Taiwan. New Microbes New Infect 2015;5:1–4 [CrossRef][PubMed]
    [Google Scholar]
  53. Yang J, Ye L, Guo L, Zhao Q, Chen R et al. A nosocomial outbreak of KPC-2-producing Klebsiella pneumoniae in a Chinese hospital: dissemination of ST11 and emergence of ST37, ST392 and ST395. Clin Microbiol Infect 2013;19:E509E515 [CrossRef][PubMed]
    [Google Scholar]
  54. Andrade LN, Curiao T, Ferreira JC, Longo JM, Clímaco EC et al. Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother 2011;55:3579–3583 [CrossRef][PubMed]
    [Google Scholar]
  55. Turton JF, Englender H, Gabriel SN, Turton SE, Kaufmann ME et al. Genetically similar isolates of Klebsiella pneumoniae serotype K1 causing liver abscesses in three continents. J Med Microbiol 2007;56:593–597 [CrossRef][PubMed]
    [Google Scholar]
  56. Ramos PI, Picão RC, Almeida LG, Lima NC, Girardello R et al. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 2014;15:54 [CrossRef][PubMed]
    [Google Scholar]
  57. de Cássia Andrade Melo R, de Barros EM, Loureiro NG, de Melo HR, Maciel MA et al. Presence of fimH, mrkD, and irp2 virulence genes in KPC-2-producing Klebsiella pneumoniae isolates in Recife-PE, Brazil. Curr Microbiol 2014;69:824–831 [CrossRef][PubMed]
    [Google Scholar]
  58. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 2013;68:771–777 [CrossRef][PubMed]
    [Google Scholar]
  59. Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother 2013;68:2234–2244 [CrossRef][PubMed]
    [Google Scholar]
  60. Evans SR, Hujer AM, Jiang H, Hujer KM, Hall T et al. Rapid molecular diagnostics, antibiotic treatment decisions, and developing approaches to inform empiric therapy: PRIMERS I and II. Clin Infect Dis 2016;62:181–189 [CrossRef][PubMed]
    [Google Scholar]
  61. Girometti N, Lewis RE, Giannella M, Ambretti S, Bartoletti M et al. Klebsiella pneumoniae bloodstream infection: epidemiology and impact of inappropriate empirical therapy. Medicine 2014;93:298–309 [CrossRef][PubMed]
    [Google Scholar]
  62. D'Andrea MM, Amisano F, Giani T, Conte V, Ciacci N et al. Diversity of capsular polysaccharide gene clusters in Kpc-producing Klebsiella pneumoniae clinical isolates of sequence type 258 involved in the Italian epidemic. PLoS One 2014;9:e96827 [CrossRef][PubMed]
    [Google Scholar]
  63. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA et al. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 2010;54:177–183 [CrossRef][PubMed]
    [Google Scholar]
  64. Bialek-Davenet S, Lavigne JP, Guyot K, Mayer N, Tournebize R et al. Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother 2015;70:81–88 [CrossRef][PubMed]
    [Google Scholar]
  65. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33:D325–D328 [CrossRef][PubMed]
    [Google Scholar]
  66. Riley MA, Gordon DM. A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol 1992;138:1345–1352 [CrossRef][PubMed]
    [Google Scholar]
  67. Loftie-Eaton W, Rawlings DE. Comparative biology of two natural variants of the IncQ-2 family plasmids, pRAS3.1 and pRAS3.2. J Bacteriol 2009;191:6436–6446 [CrossRef][PubMed]
    [Google Scholar]
  68. Chou HC, Lee CZ, Ma LC, Fang CT, Chang SC et al. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 2004;72:3783–3792 [CrossRef][PubMed]
    [Google Scholar]
  69. Lawlor MS, O'Connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 2007;75:1463–1472 [CrossRef][PubMed]
    [Google Scholar]
  70. Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 2004;337:189–198 [CrossRef][PubMed]
    [Google Scholar]
  71. Ma LC, Fang CT, Lee CZ, Shun CT, Wang JT. Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J Infect Dis 2005;192:117–128 [CrossRef][PubMed]
    [Google Scholar]
  72. Hetz C, Bono MR, Barros LF, Lagos R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA 2002;99:2696–2701 [CrossRef][PubMed]
    [Google Scholar]
  73. Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006;313:848–851 [CrossRef][PubMed]
    [Google Scholar]
  74. Struve C, Bojer M, Krogfelt KA. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 2009;77:5016–5024 [CrossRef][PubMed]
    [Google Scholar]
  75. Darfeuille-Michaud A, Jallat C, Aubel D, Sirot D, Rich C et al. R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infect Immun 1992;60:44–55[PubMed]
    [Google Scholar]
  76. Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC et al. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 2010;192:3144–3158 [CrossRef][PubMed]
    [Google Scholar]
  77. Izquierdo L, Coderch N, Piqué N, Bedini E, Corsaro MM et al. The Klebsiella pneumoniae wabG gene: role in biosynthesis of the core lipopolysaccharide and virulence. J Bacteriol 2003;185:7213–7221 [CrossRef][PubMed]
    [Google Scholar]
  78. Regué M, Hita B, Piqué N, Izquierdo L, Merino S et al. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 2004;72:54–61 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000624
Loading
/content/journal/jmm/10.1099/jmm.0.000624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error