1887

Abstract

Strains of type 89 have recently increased in frequency as a cause of human infections in several countries in Europe and North America. This increase has been molecular epidemiologically linked with the emergence of a new genetically distinct clone, designated clade 3. We sought to extend our understanding of this epidemic behavior by the genetic characterization of type 89 strains responsible in recent years for an increased frequency of infections in Scotland.

We sequenced the genomes of a retrospective cohort of 122 89 strains recovered from patients with invasive and noninvasive infections throughout Scotland during 2010 to 2016.

All but one of the 122 89 infection isolates are of the recently emerged epidemic clade 3 clonal lineage. The Scotland isolates are closely related to and not genetically distinct from recent 89 strains from England, they constitute a single genetic population.

The clade 3 clone causes virtually all-contemporary 89 infections in Scotland. These findings add Scotland to a growing list of countries of Europe and North America where, by whole genome sequencing, 89 clade 3 strains have been demonstrated to be the cause of an ongoing epidemic of invasive infections and to be genetically related due to descent from a recent common progenitor.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000622
2017-12-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/12/1765.html?itemId=/content/journal/jmm/10.1099/jmm.0.000622&mimeType=html&fmt=ahah

References

  1. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis 2005;5:685–694 [CrossRef][PubMed]
    [Google Scholar]
  2. Smeesters PR, Mcmillan DJ, Sriprakash KS. The streptococcal M protein: a highly versatile molecule. Trends Microbiol 2010;18:275–282 [CrossRef][PubMed]
    [Google Scholar]
  3. Sanderson-Smith M, De Oliveira DM, Guglielmini J, McMillan DJ, Vu T et al. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis 2014;210:1325–1338 [CrossRef][PubMed]
    [Google Scholar]
  4. Al-Shahib A, Underwood A, Afshar B, Turner CE, Lamagni T et al. Emergence of a novel lineage containing a prophage in emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK. Microb Genom 2016;2:e000059 [CrossRef][PubMed]
    [Google Scholar]
  5. Beres SB, Carroll RK, Shea PR, Sitkiewicz I, Martinez-Gutierrez JC et al. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc Natl Acad Sci USA 2010;107:4371–4376 [CrossRef][PubMed]
    [Google Scholar]
  6. Beres SB, Kachroo P, Nasser W, Olsen RJ, Zhu L et al. Transcriptome remodeling contributes to epidemic disease caused by the human pathogen Streptococcus pyogenes. MBio 2016;7:e00403-16 [CrossRef][PubMed]
    [Google Scholar]
  7. Davies MR, Holden MT, Coupland P, Chen JH, Venturini C et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet 2015;47:84–87 [CrossRef][PubMed]
    [Google Scholar]
  8. Eraso JM, Olsen RJ, Beres SB, Kachroo P, Porter AR et al. Genomic landscape of intrahost variation in group A Streptococcus: repeated and abundant mutational inactivation of the fabT gene encoding a regulator of fatty acid synthesis. Infect Immun 2016;84:3268–3281 [CrossRef][PubMed]
    [Google Scholar]
  9. Fittipaldi N, Beres SB, Olsen RJ, Kapur V, Shea PR et al. Full-genome dissection of an epidemic of severe invasive disease caused by a hypervirulent, recently emerged clone of group A Streptococcus. Am J Pathol 2012;180:1522–1534 [CrossRef][PubMed]
    [Google Scholar]
  10. Fittipaldi N, Olsen RJ, Beres SB, van Beneden C, Musser JM. Genomic analysis of emm59 group A Streptococcus invasive strains, United States. Emerg Infect Dis 2012;18:650–652 [CrossRef][PubMed]
    [Google Scholar]
  11. Nasser W, Beres SB, Olsen RJ, Dean MA, Rice KA et al. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc Natl Acad Sci USA 2014;111:E1768E1776 [CrossRef][PubMed]
    [Google Scholar]
  12. Olsen RJ, Fittipaldi N, Kachroo P, Sanson MA, Long SW et al. Clinical laboratory response to a mock outbreak of invasive bacterial infections: a preparedness study. J Clin Microbiol 2014;52:4210–4216 [CrossRef][PubMed]
    [Google Scholar]
  13. Shea PR, Beres SB, Flores AR, Ewbank AL, Gonzalez-Lugo JH et al. Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations. Proc Natl Acad Sci USA 2011;108:5039–5044 [CrossRef][PubMed]
    [Google Scholar]
  14. Teatero S, Coleman BL, Beres SB, Olsen RJ, Kandel C et al. Rapid emergence of a new clone impacts the population at risk and increases the incidence of type emm89 group a streptococcus invasive disease. Open Forum Infect Dis 2017;4:ofx042 [CrossRef][PubMed]
    [Google Scholar]
  15. Turner CE, Abbott J, Lamagni T, Holden MT, David S et al. Emergence of a new highly successful acapsular group a Streptococcus clade of genotype emm89 in the United Kingdom. MBio 2015;6:e00622 [CrossRef][PubMed]
    [Google Scholar]
  16. Creti R, Imperi M, Baldassarri L, Pataracchia M, Recchia S et al. emm Types, virulence factors, and antibiotic resistance of invasive Streptococcus pyogenes isolates from Italy: What has changed in 11 years?. J Clin Microbiol 2007;45:2249–2256 [CrossRef][PubMed]
    [Google Scholar]
  17. Darenberg J, Luca-Harari B, Jasir A, Sandgren A, Pettersson H et al. Molecular and clinical characteristics of invasive group A streptococcal infection in Sweden. Clin Infect Dis 2007;45:450–458 [CrossRef][PubMed]
    [Google Scholar]
  18. Falkenhorst G, Bagdonaite J, Lisby M, Madsen SB, Lambertsen L et al. Outbreak of group A streptococcal throat infection: don't forget to ask about food. Epidemiol Infect 2008;136:1165–1171 [CrossRef][PubMed]
    [Google Scholar]
  19. Friães A, Machado MP, Pato C, Carriço J, Melo-Cristino J et al. Emergence of the same successful clade among distinct populations of emm89 Streptococcus pyogenes in multiple geographic regions. MBio 2015;6:e01780-1501781715 [CrossRef][PubMed]
    [Google Scholar]
  20. Friães A, Pinto FR, Silva-Costa C, Ramirez M, Melo-Cristino J et al. Group A streptococci clones associated with invasive infections and pharyngitis in Portugal present differences in emm types, superantigen gene content and antimicrobial resistance. BMC Microbiol 2012;12:280 [CrossRef][PubMed]
    [Google Scholar]
  21. Ikebe T, Tominaga K, Shima T, Okuno R, Kubota H et al. Increased prevalence of group A streptococcus isolates in streptococcal toxic shock syndrome cases in Japan from 2010 to 2012. Epidemiol Infect 2015;143:864–872 [CrossRef][PubMed]
    [Google Scholar]
  22. Karaky NM, Araj GF, Tokajian ST. Molecular characterization of Streptococcus pyogenes group A isolates from a tertiary hospital in Lebanon. J Med Microbiol 2014;63:1197–1204 [CrossRef][PubMed]
    [Google Scholar]
  23. Koh E, Kim S. Decline in erythromycin resistance in group A Streptococci from acute pharyngitis due to changes in the emm Genotypes rather than restriction of antibiotic use. Korean J Lab Med 2010;30:485–490 [CrossRef][PubMed]
    [Google Scholar]
  24. Latronico F, Nasser W, Puhakainen K, Ollgren J, Hyyryläinen HL et al. Genomic characteristics behind the spread of bacteremic group A Streptococcus type emm89 in Finland, 2004-2014. J Infect Dis 2016;214:1987–1995 [CrossRef][PubMed]
    [Google Scholar]
  25. Lepoutre A, Doloy A, Bidet P, Leblond A, Perrocheau A et al. Epidemiology of invasive Streptococcus pyogenes infections in France in 2007. J Clin Microbiol 2011;49:4094–4100 [CrossRef][PubMed]
    [Google Scholar]
  26. Luca-Harari B, Darenberg J, Neal S, Siljander T, Strakova L et al. Clinical and microbiological characteristics of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 2009;47:1155–1165 [CrossRef][PubMed]
    [Google Scholar]
  27. Naseer U, Steinbakk M, Blystad H, Caugant DA. Epidemiology of invasive group A streptococcal infections in Norway 2010-2014: a retrospective cohort study. Eur J Clin Microbiol Infect Dis 2016;35:1639–1648 [CrossRef][PubMed]
    [Google Scholar]
  28. Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML et al. Epidemiology of invasive group A Streptococcal infections in the United States, 2005-2012. Clin Infect Dis 2016;63:478–486 [CrossRef][PubMed]
    [Google Scholar]
  29. O'Loughlin RE, Roberson A, Cieslak PR, Lynfield R, Gershman K et al. The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000-2004. Clin Infect Dis 2007;45:853–862 [CrossRef][PubMed]
    [Google Scholar]
  30. Olafsdottir LB, Erlendsdóttir H, Melo-Cristino J, Weinberger DM, Ramirez M et al. Invasive infections due to Streptococcus pyogenes: seasonal variation of severity and clinical characteristics, Iceland, 1975 to 2012. Euro Surveill 2014;19:20784–14 [CrossRef][PubMed]
    [Google Scholar]
  31. Plainvert C, Doloy A, Loubinoux J, Lepoutre A, Collobert G et al. Invasive group A streptococcal infections in adults, France (2006-2010). Clin Microbiol Infect 2012;18:702–710 [CrossRef][PubMed]
    [Google Scholar]
  32. Plainvert C, Loubinoux J, Bidet P, Doloy A, Touak G et al. [Epidemiology of Streptococcus pyogenes invasive diseases in France (2007–2011)]. Arch Pediatr 2014;21:S62–S68 [CrossRef][PubMed]
    [Google Scholar]
  33. Rantala S, Vähäkuopus S, Siljander T, Vuopio J, Huhtala H et al. Streptococcus pyogenes bacteraemia, emm types and superantigen profiles. Eur J Clin Microbiol Infect Dis 2012;31:859–865 [CrossRef][PubMed]
    [Google Scholar]
  34. Shea PR, Ewbank AL, Gonzalez-Lugo JH, Martagon-Rosado AJ, Martinez-Gutierrez JC et al. Group A Streptococcus emm gene types in pharyngeal isolates, Ontario, Canada, 20022010. Emerg Infect Dis 2011;17:2010–2017 [CrossRef][PubMed]
    [Google Scholar]
  35. Siljander T, Lyytikäinen O, Vähäkuopus S, Snellman M, Jalava J et al. Epidemiology, outcome and emm types of invasive group A streptococcal infections in Finland. Eur J Clin Microbiol Infect Dis 2010;29:1229–1235 [CrossRef][PubMed]
    [Google Scholar]
  36. Smit PW, Lindholm L, Lyytikäinen O, Jalava J, Pätäri-Sampo A et al. Epidemiology and emm types of invasive group A streptococcal infections in Finland, 2008-2013. Eur J Clin Microbiol Infect Dis 2015;34:2131–2136 [CrossRef][PubMed]
    [Google Scholar]
  37. Tamayo E, Montes M, García-Arenzana JM, Pérez-Trallero E. Streptococcus pyogenes emm-types in northern Spain; population dynamics over a 7-year period. J Infect 2014;68:50–57 [CrossRef][PubMed]
    [Google Scholar]
  38. Vähäkuopus S, Vuento R, Siljander T, Syrjänen J, Vuopio J. Distribution of emm types in invasive and non-invasive group A and G streptococci. Eur J Clin Microbiol Infect Dis 2012;31:1251–1256 [CrossRef][PubMed]
    [Google Scholar]
  39. Williamson DA, Moreland NJ, Carter P, Upton A, Morgan J et al. Molecular epidemiology of group A streptococcus from pharyngeal isolates in Auckland, New Zealand, 2013. N Z Med J 2014;127:55–60[PubMed]
    [Google Scholar]
  40. Williamson DA, Morgan J, Hope V, Fraser JD, Moreland NJ et al. Increasing incidence of invasive group A streptococcus disease in New Zealand, 2002-2012: a national population-based study. J Infect 2015;70:127–134 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhu L, Olsen RJ, Nasser W, Beres SB, Vuopio J et al. A molecular trigger for intercontinental epidemics of group A Streptococcus. J Clin Invest 2015;125:3545–3559 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhu L, Olsen RJ, Nasser W, de La Riva Morales I, Musser JM. Trading capsule for increased cytotoxin production: contribution to virulence of a newly emerged clade of emm89 Streptococcus pyogenes. MBio 2015;6:e01378-1501315 [CrossRef][PubMed]
    [Google Scholar]
  43. Liu YM, Zhao JZ, Li BB, Yang JY, Dong XG et al. A report on the first outbreak of a single clone group A Streptococcus (emm-type 89) tonsillopharyngitis in China. J Microbiol Immunol Infect 2014;47:542–545 [CrossRef][PubMed]
    [Google Scholar]
  44. Lindsay DS, Brown AW, Scott KJ, Denham B, Thom L et al. Circulating emm types of Streptococcus pyogenes in Scotland: 2011-2015. J Med Microbiol 2016;65:1229–1231 [CrossRef][PubMed]
    [Google Scholar]
  45. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  46. Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 2013;29:308–315 [CrossRef][PubMed]
    [Google Scholar]
  47. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  48. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014;6:90 [CrossRef][PubMed]
    [Google Scholar]
  49. Garrison E, Marth. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907 [q-bio.GN] 2012
    [Google Scholar]
  50. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using gubbins. Nucleic Acids Res 2015;43:e15 [CrossRef][PubMed]
    [Google Scholar]
  51. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006;23:254–267 [CrossRef][PubMed]
    [Google Scholar]
  52. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012;61:1061–1067 [CrossRef][PubMed]
    [Google Scholar]
  53. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  54. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2016;2:vew007 [CrossRef][PubMed]
    [Google Scholar]
  55. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–842 [CrossRef][PubMed]
    [Google Scholar]
  56. Flores AR, Jewell BE, Fittipaldi N, Beres SB, Musser JM. Human disease isolates of serotype m4 and m22 group a streptococcus lack genes required for hyaluronic acid capsule biosynthesis. MBio 2012;3:e00413-12 [CrossRef][PubMed]
    [Google Scholar]
  57. Foley MJ, Wood WB. Studies on the pathogenicity of group A streptococci. II. The antiphagocytic effects of the M protein and the capsular gel. J Exp Med 1959;110:617–628 [CrossRef][PubMed]
    [Google Scholar]
  58. Wessels MR, Moses AE, Goldberg JB, Dicesare TJ. Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci USA 1991;88:8317–8321 [CrossRef][PubMed]
    [Google Scholar]
  59. Darmstadt GL, Mentele L, Podbielski A, Rubens CE. Role of group A streptococcal virulence factors in adherence to keratinocytes. Infect Immun 2000;68:1215–1221 [CrossRef][PubMed]
    [Google Scholar]
  60. Whitnack E, Bisno AL, Beachey EH. Hyaluronate capsule prevents attachment of group A streptococci to mouse peritoneal macrophages. Infect Immun 1981;31:985–991[PubMed]
    [Google Scholar]
  61. Zhu L, Olsen RJ, Lee JD, Porter AR, Deleo FR et al. Contribution of secreted nadase and streptolysin O to the pathogenesis of epidemic serotype M1 Streptococcus pyogenes infections. Am J Pathol 2017;187:605–613 [CrossRef][PubMed]
    [Google Scholar]
  62. Edgar RJ, Chen J, Kant S, Rechkina E, Rush JS et al. SpyB, a small heme-binding protein, affects the composition of the cell wall in Streptococcus pyogenes. Front Cell Infect Microbiol 2016;6:126 [CrossRef][PubMed]
    [Google Scholar]
  63. Hoff JS, Dewald M, Moseley SL, Collins CM, Voyich JM. SpyA, a C3-like ADP-ribosyltransferase, contributes to virulence in a mouse subcutaneous model of Streptococcus pyogenes infection. Infect Immun 2011;79:2404–2411 [CrossRef][PubMed]
    [Google Scholar]
  64. Beres SB, Musser JM. Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One 2007;2:e800 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000622
Loading
/content/journal/jmm/10.1099/jmm.0.000622
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error