1887

Abstract

To characterize members of the complex, with an emphasis on the correlation between species identification and clarithromycin associated genetic polymorphisms that contribute to inducible and constitutive macrolide resistance. PCR and sequencing analysis was used to elucidate the subspecies, (41) genotypes and the presence of mutations. subsp. was the dominant subspecies (70.2 %), followed by subsp. (23.8 %) and subsp. (5.9 %). The majority of and isolates possessed T28 (41) sequevar and were inducibly resistant to clarithromycin. All carried the truncated (41) and were largely clarithromycin-susceptible (98.3 %). Constitutive resistance involving mutations was rare and seen in only 2 isolates (2.2 %). Subspecies identification was insufficient to predict clarithromycin susceptibility and required the genetic resistance to be determined via sequencing. In our context, mutations were uncommon and may not be an essential test.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000576
2017-10-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/10/1443.html?itemId=/content/journal/jmm/10.1099/jmm.0.000576&mimeType=html&fmt=ahah

References

  1. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007;175:367–416 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN et al. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis 2015;21:1638–1646 [CrossRef][PubMed]
    [Google Scholar]
  3. Simons S, van Ingen J, Hsueh PR, van Hung N, Dekhuijzen PN et al. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg Infect Dis 2011;17:343–349 [CrossRef][PubMed]
    [Google Scholar]
  4. Tang SS, Lye DC, Jureen R, Sng LH, Hsu LY. Rapidly growing mycobacteria in Singapore, 2006-2011. Clin Microbiol Infect 2015;21:236–241 [CrossRef][PubMed]
    [Google Scholar]
  5. Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss CH et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 2012;185:231–232
    [Google Scholar]
  6. Kim YS, Yang CS, Nguyen LT, Kim JK, Jin HS et al. Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection. Microbes Infect 2017;19:5–17 [CrossRef][PubMed]
    [Google Scholar]
  7. Howard ST. Recent progress towards understanding genetic variation in the Mycobacterium abscessus complex. Tuberculosis 2013;93:S15–S20 [CrossRef][PubMed]
    [Google Scholar]
  8. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 2012;67:810–818 [CrossRef][PubMed]
    [Google Scholar]
  9. Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 2011;183:405–410 [CrossRef][PubMed]
    [Google Scholar]
  10. Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes, 2nd ed. Approval Standard M24-A2 Wayne, PA: Clinical and Laboratory Standards Institute; 2011
    [Google Scholar]
  11. Nash KA, Brown-Elliott BA, Wallace RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009;53:1367–1376 [CrossRef][PubMed]
    [Google Scholar]
  12. Bastian S, Veziris N, Roux AL, Brossier F, Gaillard JL et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother 2011;55:775–781 [CrossRef][PubMed]
    [Google Scholar]
  13. Wallace RJ, Meier A, Brown BA, Zhang Y, Sander P et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 1996;40:1676–1681[PubMed]
    [Google Scholar]
  14. Harada T, Akiyama Y, Kurashima A, Nagai H, Tsuyuguchi K et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J Clin Microbiol 2012;50:3556–3561 [CrossRef][PubMed]
    [Google Scholar]
  15. Adékambi T, Drancourt M. Mycobacterium bolletii respiratory infections. Emerg Infect Dis 2009;15:302–305 [CrossRef][PubMed]
    [Google Scholar]
  16. Adékambi T, Berger P, Raoult D, Drancourt M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 2006;56:133–143 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim H, Kim SH, Shim TS, Kim MN, Bai GH et al. Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol 2005;55:1649–1656 [CrossRef][PubMed]
    [Google Scholar]
  18. Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST et al. Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J Clin Microbiol 2015;53:1211–1215 [CrossRef][PubMed]
    [Google Scholar]
  19. Rubio M, March F, Garrigó M, Moreno C, Español M et al. Inducible and acquired clarithromycin resistance in the Mycobacterium abscessus complex. PLoS One 2015;10:e0140166 [CrossRef][PubMed]
    [Google Scholar]
  20. O'Driscoll C, Konjek J, Heym B, Fitzgibbon MM, Plant BJ et al. Molecular epidemiology of Mycobacterium abscessus complex isolates in Ireland. J Cyst Fibros 2016;15:179–185 [CrossRef][PubMed]
    [Google Scholar]
  21. Chua KY, Bustamante A, Jelfs P, Chen SC, Sintchenko V. Antibiotic susceptibility of diverse Mycobacterium abscessus complex strains in New South Wales, Australia. Pathology 2015;47:678–682 [CrossRef][PubMed]
    [Google Scholar]
  22. Nie W, Duan H, Huang H, Lu Y, Bi D et al. Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis 2014;25:170–174 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim HY, Kook Y, Yun YJ, Park CG, Lee NY et al. Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonae-Mycobacterium abscessus group isolates. J Clin Microbiol 2008;46:3384–3390 [CrossRef][PubMed]
    [Google Scholar]
  24. Shallom SJ, Gardina PJ, Myers TG, Sebastian Y, Conville P et al. New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identifying Mycobacterium massiliense isolates with inducible clarithromycin resistance. J Clin Microbiol 2013;51:2943–2949 [CrossRef][PubMed]
    [Google Scholar]
  25. Maurer FP, Rüegger V, Ritter C, Bloemberg GV, Böttger EC. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). J Antimicrob Chemother 2012;67:2606–2611 [CrossRef][PubMed]
    [Google Scholar]
  26. Mougari F, Loiseau J, Veziris N, Bernard C, Bercot B et al. Evaluation of the new genotype NTM-DR kit for the molecular detection of antimicrobial resistance in non-tuberculous mycobacteria. J Antimicrob Chemother 2017;72:1669–1677 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000576
Loading
/content/journal/jmm/10.1099/jmm.0.000576
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error