1887

Abstract

Purpose. Streptococcus pneumoniae is a commensal bacterium that normally colonizes the human nasopharyngeal cavity. Once disseminated, it can cause several diseases, ranging from non-invasive infections such as acute otitis media and sinusitis through to invasive infections with higher mortality, including meningitis and septicaemia. Since the identification of the first S. pneumoniae strain with decreased susceptibility to penicillin in the 1960s, antibiotic resistance among S. pneumoniae has increased disturbingly and the mechanisms of resistance have begun to unfold.

Methodology. This work briefly reviewed the available data on the molecular mechanisms underlying antimicrobial resistance and its epidemiology among pneumococcal strains in Middle Eastern countries.

Key findings. Both intrinsic and acquired mechanisms (mutations, acquisition of novel mobile genetic elements and sometimes gene duplication and overexpression) affect susceptibility to a large variety of antibiotics. In Middle Eastern countries, including Lebanon, Iran, Saudi Arabia and Turkey, surveillance showed a disturbing increase in the strength and prevalence of resistance to antibiotics over the years, especially in the last decade. However, no surveillance reports were found in other Middle Eastern countries, such as Syria and Iraq.

Conclusion. In order to better survey, control and prevent the emergence of multidrug- and extremely drug-resistant S. pneumoniae strains, antimicrobial stewardship, national surveillance and public awareness programmes should be developed urgently in Middle Eastern countries.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000503
2017-06-26
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/7/847.html?itemId=/content/journal/jmm/10.1099/jmm.0.000503&mimeType=html&fmt=ahah

References

  1. Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med 2013;3:a010215 [CrossRef][PubMed]
    [Google Scholar]
  2. O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 2009;374:893–902 [CrossRef][PubMed]
    [Google Scholar]
  3. Obaro S, Adegbola R. The pneumococcus: carriage, disease and conjugate vaccines. J Med Microbiol 2002;51:98–104 [CrossRef][PubMed]
    [Google Scholar]
  4. Mahon CR, Lehman DC, Manuselis G. Textbook of Diagnostic Microbiology, 4th ed. Saunders; 2010
    [Google Scholar]
  5. Donkor ES. Understanding the pneumococcus: transmission and evolution. Front Cell Infect Microbiol 2013;3:7 [CrossRef][PubMed]
    [Google Scholar]
  6. Chandler LJ, Reisner BS, Woods GL, Jafri AK. Comparison of four methods for identifying Streptococcus pneumoniae. Diagn Microbiol Infect Dis 2000;37:285–287 [CrossRef][PubMed]
    [Google Scholar]
  7. Llull D, López R, García E. Characteristic signatures of the lytA gene provide a basis for rapid and reliable diagnosis of Streptococcus pneumoniae infections. J Clin Microbiol 2006;44:1250–1256 [CrossRef][PubMed]
    [Google Scholar]
  8. Satzke C, Turner P, Virolainen-Julkunen A, Adrian PV, Antonio M et al. Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. Vaccine 2013;32:165–179 [CrossRef][PubMed]
    [Google Scholar]
  9. Simões AS, Tavares DA, Rolo D, Ardanuy C, Goossens H et al. lytA-based identification methods can misidentify Streptococcus pneumoniae. Diagn Microbiol Infect Dis 2016;85:141–148 [CrossRef][PubMed]
    [Google Scholar]
  10. Bogaert D, de Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004;4:144–154 [CrossRef][PubMed]
    [Google Scholar]
  11. Torres A, Blasi F, Dartois N, Akova M. Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease. Thorax 2015;70:984–989 [CrossRef][PubMed]
    [Google Scholar]
  12. Hansman D, Bullen MM. A resistant pneumococcus. The Lancet 1967;290:264–265 [CrossRef]
    [Google Scholar]
  13. Appelbaum PC. World-wide development of antibiotic resistance in pneumococci. Eur J Clin Microbiol 1987;6:367–377 [CrossRef][PubMed]
    [Google Scholar]
  14. Chiou CC, Liu YC, Huang TS, Hwang WK, Wang JH et al. Extremely high prevalence of nasopharyngeal carriage of penicillin-resistant Streptococcus pneumoniae among children in Kaohsiung, Taiwan. J Clin Microbiol 1998;36:1933–1937[PubMed]
    [Google Scholar]
  15. Samore MH, Magill MK, Alder SC, Severina E, Morrison-de Boer L et al. High rates of multiple antibiotic resistance in Streptococcus pneumoniae from healthy children living in isolated rural communities: association with cephalosporin use and intrafamilial transmission. Pediatrics 2001;108:856–865 [CrossRef][PubMed]
    [Google Scholar]
  16. Bingen E. β-lactamines et streptocoques (pneumocoques). In Courvalin P, Leclercq R, Bingen E. (editors) Antibiogramme Paris, France: ESKA; 2012; pp.147–156
    [Google Scholar]
  17. Neu HC, Gootz TD. Antimicrobial Chemotherapy Galveston, TX: University of Texas Medical Branch at Galveston; 1996;http://www.ncbi.nlm.nih.gov/books/NBK7986/
    [Google Scholar]
  18. Jensen A, Valdórsson O, Frimodt-Møller N, Hollingshead S, Kilian M. Commensal streptococci serve as a reservoir for β-lactam resistance genes in Streptococcus pneumoniae. Antimicrob Agents Chemother 2015;59:3529–3540 [CrossRef][PubMed]
    [Google Scholar]
  19. Philippe J, Gallet B, Morlot C, Denapaite D, Hakenbeck R et al. Mechanism of β-lactam action in Streptococcus pneumoniae: the piperacillin paradox. Antimicrob Agents Chemother 2015;59:609–621 [CrossRef][PubMed]
    [Google Scholar]
  20. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 2014;10:e1004547 [CrossRef][PubMed]
    [Google Scholar]
  21. Garcia-Bustos J, Tomasz A. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci USA 1990;87:5415–5419 [CrossRef][PubMed]
    [Google Scholar]
  22. Filipe SR, Tomasz A. Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. Proc Natl Acad Sci USA 2000;97:4891–4896 [CrossRef][PubMed]
    [Google Scholar]
  23. Smith AM, Klugman KP. Alterations in MurM, a cell wall muropeptide branching enzyme, increase high-level penicillin and cephalosporin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2001;45:2393–2396 [CrossRef][PubMed]
    [Google Scholar]
  24. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 1999;43:727–737[PubMed]
    [Google Scholar]
  25. Faibis F, Fiacre A, Demachy MC. [Update on the susceptibility of streptococci to antibiotics (enterococci and Streptococcus pneumoniae excluded)]. Ann Biol Clin 2003;61:49–59 (Article in French)[PubMed]
    [Google Scholar]
  26. Courvalin P, Carlier C. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol Gen Genet 1986;205:291–297 [CrossRef][PubMed]
    [Google Scholar]
  27. Cochetti I, Tili E, Vecchi M, Manzin A, Mingoia M et al. New Tn916-related elements causing erm(B)-mediated erythromycin resistance in tetracycline-susceptible pneumococci. J Antimicrob Chemother 2007;60:127–131 [CrossRef][PubMed]
    [Google Scholar]
  28. Collatz E, Carlier C, Courvalin P. Characterization of high-level aminoglycoside resistance in a strain of Streptococcus pneumoniae. J Gen Microbiol 1984;130:1665–1671 [CrossRef][PubMed]
    [Google Scholar]
  29. Palmieri C, Mingoia M, Massidda O, Giovanetti E, Varaldo PE. Streptococcus pneumoniae transposon Tn1545/Tn6003 changes to Tn6002 due to spontaneous excision in circular form of the erm(B)- and aphA3-containing macrolide-aminoglycoside-streptothricin (MAS) element. Antimicrob Agents Chemother 2012;56:5994–5997 [CrossRef][PubMed]
    [Google Scholar]
  30. McDougal LK, Tenover FC, Lee LN, Rasheed JK, Patterson JE et al. Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3872) in erythromycin-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1998;42:2312–2318[PubMed]
    [Google Scholar]
  31. Arthur M, Andremont A, Courvalin P. Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother 1987;31:404–409 [CrossRef][PubMed]
    [Google Scholar]
  32. Syrogiannopoulos GA, Grivea IN, Tait-Kamradt A, Katopodis GD, Beratis NG et al. Identification of an erm(A) erythromycin resistance methylase gene in Streptococcus pneumoniae isolated in Greece. Antimicrob Agents Chemother 2001;45:342–344 [CrossRef][PubMed]
    [Google Scholar]
  33. Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 1991;35:1267–1272 [CrossRef][PubMed]
    [Google Scholar]
  34. Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 1996;40:1817–1824[PubMed]
    [Google Scholar]
  35. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L et al. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997;41:2251–2255[PubMed]
    [Google Scholar]
  36. Gay K, Stephens DS. Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae. J Infect Dis 2001;184:56–65 [CrossRef][PubMed]
    [Google Scholar]
  37. Del Grosso M, Scotto D'Abusco A, Iannelli F, Pozzi G, Pantosti A. Tn2009, a Tn916-like element containing mef(E) in Streptococcus pneumoniae. Antimicrob Agents Chemother 2004;48:2037–2042 [CrossRef][PubMed]
    [Google Scholar]
  38. del Grosso M, Northwood JG, Farrell DJ, Pantosti A. The macrolide resistance genes erm(B) and mef(E) are carried by Tn2010 in dual-gene Streptococcus pneumoniae isolates belonging to clonal complex CC271. Antimicrob Agents Chemother 2007;51:4184–4186 [CrossRef][PubMed]
    [Google Scholar]
  39. Santagati M, Iannelli F, Oggioni MR, Stefani S, Pozzi G. Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob Agents Chemother 2000;44:2585–2587 [CrossRef][PubMed]
    [Google Scholar]
  40. Cochetti I, Vecchi M, Mingoia M, Tili E, Catania MR et al. Molecular characterization of pneumococci with efflux-mediated erythromycin resistance and identification of a novel mef gene subclass, mef(I). Antimicrob Agents Chemother 2005;49:4999–5006 [CrossRef][PubMed]
    [Google Scholar]
  41. Mingoia M, Vecchi M, Cochetti I, Tili E, Vitali LA et al. Composite structure of Streptococcus pneumoniae containing the erythromycin efflux resistance gene mefI and the chloramphenicol resistance gene catQ. Antimicrob Agents Chemother 2007;51:3983–3987 [CrossRef][PubMed]
    [Google Scholar]
  42. Mingoia M, Morici E, Morroni G, Giovanetti E, Del Grosso M et al. Tn5253 family integrative and conjugative elements carrying mef(I) and catQ determinants in Streptococcus pneumoniae and Streptococcus pyogenes. Antimicrob Agents Chemother 2014;58:5886–5893 [CrossRef][PubMed]
    [Google Scholar]
  43. Depardieu F, Courvalin P. Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob Agents Chemother 2001;45:319–323 [CrossRef][PubMed]
    [Google Scholar]
  44. Tait-Kamradt A, Davies T, Appelbaum PC, Depardieu F, Courvalin P et al. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother 2000;44:3395–3401 [CrossRef][PubMed]
    [Google Scholar]
  45. Janoir C, Zeller V, Kitzis MD, Moreau NJ, Gutmann L. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother 1996;40:2760–2764[PubMed]
    [Google Scholar]
  46. Bast DJ, Low DE, Duncan CL, Kilburn L, Mandell LA et al. Fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae: contributions of type II topoisomerase mutations and efflux to levels of resistance. Antimicrob Agents Chemother 2000;44:3049–3054 [CrossRef][PubMed]
    [Google Scholar]
  47. Muñoz R, de La Campa AG. ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype. Antimicrob Agents Chemother 1996;40:2252–2257[PubMed]
    [Google Scholar]
  48. Gillespie SH, Voelker LL, Ambler JE, Traini C, Dickens A. Fluoroquinolone resistance in Streptococcus pneumoniae: evidence that gyrA mutations arise at a lower rate and that mutation in gyrA or parC predisposes to further mutation. Microb Drug Resist 2003;9:17–24 [CrossRef][PubMed]
    [Google Scholar]
  49. Pan XS, Fisher LM. DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae. Antimicrob Agents Chemother 1998;42:2810–2816[PubMed]
    [Google Scholar]
  50. Perichon B, Tankovic J, Courvalin P. Characterization of a mutation in the parE gene that confers fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997;41:1166–1167[PubMed]
    [Google Scholar]
  51. Kawamura-Sato K, Hasegawa T, Torii K, Ito H, Ohta M. Prevalence of Ile-460-Val/ParE substitution in clinical Streptococcus pneumoniae isolates that were less susceptible to fluoroquinolones. Curr Microbiol 2005;51:27–30 [CrossRef][PubMed]
    [Google Scholar]
  52. Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 2000;31:S24–S28 [CrossRef][PubMed]
    [Google Scholar]
  53. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev 1996;60:575–608[PubMed]
    [Google Scholar]
  54. Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999;43:187–189[PubMed][CrossRef]
    [Google Scholar]
  55. Garvey MI, Baylay AJ, Wong RL, Piddock LJ. Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 2011;55:190–196 [CrossRef][PubMed]
    [Google Scholar]
  56. Boncoeur E, Durmort C, Bernay B, Ebel C, di Guilmi AM et al. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry 2012;51:7755–7765 [CrossRef][PubMed]
    [Google Scholar]
  57. Baylay AJ, Ivens A, Piddock LJ. A novel gene amplification causes upregulation of the PatAB ABC transporter and fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2015;59:3098–3108 [CrossRef][PubMed]
    [Google Scholar]
  58. Baylay AJ, Piddock LJ. Clinically relevant fluoroquinolone resistance due to constitutive overexpression of the PatAB ABC transporter in Streptococcus pneumoniae is conferred by disruption of a transcriptional attenuator. J Antimicrob Chemother 2015;70:670–679 [CrossRef][PubMed]
    [Google Scholar]
  59. Janoir C, Podglajen I, Kitzis MD, Poyart C, Gutmann L. In vitro exchange of fluoroquinolone resistance determinants between Streptococcus pneumoniae and viridans streptococci and genomic organization of the parE-parC region in S. mitis. J Infect Dis 1999;180:555–558 [CrossRef][PubMed]
    [Google Scholar]
  60. Balsalobre L, Ferrándiz MJ, Liñares J, Tubau F, de La Campa AG. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae. Antimicrob Agents Chemother 2003;47:2072–2081 [CrossRef][PubMed]
    [Google Scholar]
  61. Stanhope MJ, Walsh SL, Becker JA, Italia MJ, Ingraham KA et al. Molecular evolution perspectives on intraspecific lateral DNA transfer of topoisomerase and gyrase loci in Streptococcus pneumoniae, with implications for fluoroquinolone resistance development and spread. Antimicrob Agents Chemother 2005;49:4315–4326 [CrossRef][PubMed]
    [Google Scholar]
  62. Cottagnoud P, Cottagnoud M, Täuber MG. Vancomycin acts synergistically with gentamicin against penicillin-resistant pneumococci by increasing the intracellular penetration of gentamicin. Antimicrob Agents Chemother 2003;47:144–147 [CrossRef][PubMed]
    [Google Scholar]
  63. Normark BH, Novak R, Ortqvist A, Källenius G, Tuomanen E et al. Clinical isolates of Streptococcus pneumoniae that exhibit tolerance of vancomycin. Clin Infect Dis 2001;32:552–558 [CrossRef][PubMed]
    [Google Scholar]
  64. Sung H, Shin HB, Kim MN, Lee K, Kim EC et al. Vancomycin-tolerant Streptococcus pneumoniae in Korea. J Clin Microbiol 2006;44:3524–3528 [CrossRef][PubMed]
    [Google Scholar]
  65. Novak R, Henriques B, Charpentier E, Normark S, Tuomanen E. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 1999;399:590–593 [CrossRef][PubMed]
    [Google Scholar]
  66. Howe JG, Wilson TS. Co-trimoxazole-resistant pneumococci. Lancet 1972;2:184–185 [CrossRef][PubMed]
    [Google Scholar]
  67. Adrian PV, Klugman KP. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1997;41:2406–2413[PubMed]
    [Google Scholar]
  68. Schmitz FJ, Perdikouli M, Beeck A, Verhoef J, Fluit AC et al. Resistance to trimethoprim-sulfamethoxazole and modifications in genes coding for dihydrofolate reductase and dihydropteroate synthase in European Streptococcus pneumoniae isolates. J Antimicrob Chemother 2001;48:935–936 [CrossRef][PubMed]
    [Google Scholar]
  69. Cornick JE, Harris SR, Parry CM, Moore MJ, Jassi C et al. Genomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawi. J Antimicrob Chemother 2014;69:368–374 [CrossRef][PubMed]
    [Google Scholar]
  70. Padayachee T, Klugman KP. Novel expansions of the gene encoding dihydropteroate synthase in trimethoprim-sulfamethoxazole-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 1999;43:2225–2230[PubMed]
    [Google Scholar]
  71. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001;65:232–260 [CrossRef][PubMed]
    [Google Scholar]
  72. Shoemaker NB, Smith MD, Guild WR. Organization and transfer of heterologous chloramphenicol and tetracycline resistance genes in pneumococcus. J Bacteriol 1979;139:432–441[PubMed]
    [Google Scholar]
  73. Vijayakumar MN, Priebe SD, Guild WR. Structure of a conjugative element in Streptococcus pneumoniae. J Bacteriol 1986;166:978–984 [CrossRef][PubMed]
    [Google Scholar]
  74. Ayoubi P, Kilic AO, Vijayakumar MN. Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol 1991;173:1617–1622 [CrossRef][PubMed]
    [Google Scholar]
  75. Santoro F, Oggioni MR, Pozzi G, Iannelli F. Nucleotide sequence and functional analysis of the tet(M)-carrying conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett 2010;308:150–158 [CrossRef][PubMed]
    [Google Scholar]
  76. Roberts AP, Mullany P. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol 2009;17:251–258 [CrossRef][PubMed]
    [Google Scholar]
  77. Varaldo PE, Montanari MP, Giovanetti E. Genetic elements responsible for erythromycin resistance in streptococci. Antimicrob Agents Chemother 2009;53:343–353 [CrossRef][PubMed]
    [Google Scholar]
  78. Grohs P, Trieu-Cuot P, Podglajen I, Grondin S, Firon A et al. Molecular basis for different levels of tet(M) expression in Streptococcus pneumoniae clinical isolates. Antimicrob Agents Chemother 2012;56:5040–5045 [CrossRef][PubMed]
    [Google Scholar]
  79. Widdowson CA, Klugman KP, Hanslo D. Identification of the tetracycline resistance gene, tet(O), in Streptococcus pneumoniae. Antimicrob Agents Chemother 1996;40:2891–2893[PubMed]
    [Google Scholar]
  80. Luna VA, Roberts MC. The presence of the tetO gene in a variety of tetracycline-resistant Streptococcus pneumoniae serotypes from Washington State. J Antimicrob Chemother 1998;42:613–619 [CrossRef][PubMed]
    [Google Scholar]
  81. Lupien A, Gingras H, Bergeron MG, Leprohon P, Ouellette M. Multiple mutations and increased RNA expression in tetracycline-resistant Streptococcus pneumoniae as determined by genome-wide DNA and mRNA sequencing. J Antimicrob Chemother 2015;70:1946–1959 [CrossRef][PubMed]
    [Google Scholar]
  82. Padayachee T, Klugman KP. Molecular basis of rifampin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999;43:2361–2365[PubMed]
    [Google Scholar]
  83. Ferrándiz MJ, Ardanuy C, Liñares J, García-Arenzana JM, Cercenado E et al. New mutations and horizontal transfer of rpoB among rifampin-resistant Streptococcus pneumoniae from four Spanish hospitals. Antimicrob Agents Chemother 2005;49:2237–2245 [CrossRef][PubMed]
    [Google Scholar]
  84. Dang-van A, Tiraby G, Acar JF, Shaw WV, Bouanchaud DH. Chloramphenicol resistance in Streptococcus pneumoniae: enzymatic acetylation and possible plasmid linkage. Antimicrob Agents Chemother 1978;13:577–583 [CrossRef][PubMed]
    [Google Scholar]
  85. Yunis AA. Chloramphenicol: relation of structure to activity and toxicity. Annu Rev Pharmacol Toxicol 1988;28:83–100 [CrossRef][PubMed]
    [Google Scholar]
  86. Widdowson CA, Adrian PV, Klugman KP. Acquisition of chloramphenicol resistance by the linearization and integration of the entire staphylococcal plasmid pC194 into the chromosome of Streptococcus pneumoniae. Antimicrob Agents Chemother 2000;44:393–395 [CrossRef][PubMed]
    [Google Scholar]
  87. Iannelli F, Santoro F, Oggioni MR, Pozzi G. Nucleotide sequence analysis of integrative conjugative element Tn5253 of Streptococcus pneumoniae. Antimicrob Agents Chemother 2014;58:1235–1239 [CrossRef][PubMed]
    [Google Scholar]
  88. Mingoia M, Morici E, Brenciani A, Giovanetti E, Varaldo PE. Genetic basis of the association of resistance genes mef(I) (macrolides) and catQ (chloramphenicol) in streptococci. Front Microbiol 2014;5:747 [CrossRef][PubMed]
    [Google Scholar]
  89. Laxminarayan R, Matsoso P, Pant S, Brower C, Røttingen JA et al. Access to effective antimicrobials: a worldwide challenge. Lancet 2016;387:168–175 [CrossRef][PubMed]
    [Google Scholar]
  90. Habibzadeh F. Use and misuse of antibiotics in the Middle East. Lancet 2013;382
    [Google Scholar]
  91. Hanna-Wakim R, Chehab H, Mahfouz I, Nassar F, Baroud M et al. Epidemiologic characteristics, serotypes, and antimicrobial susceptibilities of invasive Streptococcus pneumoniae isolates in a nationwide surveillance study in Lebanon. Vaccine 2012;30:G11–G17 [CrossRef][PubMed]
    [Google Scholar]
  92. Taha N, Araj GF, Wakim RH, Kanj SS, Kanafani ZA et al. Genotypes and serotype distribution of macrolide resistant invasive and non-invasive Streptococcus pneumoniae isolates from Lebanon. Ann Clin Microbiol Antimicrob 2012;11:2 [CrossRef][PubMed]
    [Google Scholar]
  93. Chamoun K, Farah M, Araj G, Daoud Z, Moghnieh R et al. Surveillance of antimicrobial resistance in Lebanese hospitals: retrospective nationwide compiled data. Int J Infect Dis 2016;46:64–70 [CrossRef][PubMed]
    [Google Scholar]
  94. Jamsheer A, Rafay AM, Daoud Z, Morrissey I, Torumkuney D. Results from the Survey of Antibiotic Resistance (SOAR) 2011–13 in the Gulf States. J Antimicrob Chemother 2016;71:i45–i61 [CrossRef][PubMed]
    [Google Scholar]
  95. Dabboussi F, Allouche S, Mallat H, Hamze M. Prevalence of first-step mutants among levofloxacin-susceptible isolates of Streptococcus pneumoniae in north Lebanon. J Chemother 2013;25:328–331 [CrossRef][PubMed]
    [Google Scholar]
  96. El-Nawawy AA, Hafez SF, Meheissen MA, Shahtout NM, Mohammed EE. Nasopharyngeal carriage, capsular and molecular serotyping and antimicrobial susceptibility of Streptococcus pneumoniae among asymptomatic healthy children in Egypt. J Trop Pediatr 2015;61:455–463 [CrossRef][PubMed]
    [Google Scholar]
  97. Borg MA, Scicluna E, de Kraker M, van de Sande-Bruinsma N, Tiemersma E et al. Antibiotic resistance in the southeastern Mediterranean—preliminary results from the ARMed project. Euro Surveill 2006;11:164–167[PubMed]
    [Google Scholar]
  98. Borg MA, Tiemersma E, Scicluna E, van de Sande-Bruinsma N, de Kraker M et al. Prevalence of penicillin and erythromycin resistance among invasive Streptococcus pneumoniae isolates reported by laboratories in the southern and eastern Mediterranean region. Clin Microbiol Infect 2009;15:232–237 [CrossRef][PubMed]
    [Google Scholar]
  99. Shibl AM, Memish ZA, Al-Kattan KM. Antibiotic resistance and serotype distribution of invasive pneumococcal diseases before and after introduction of pneumococcal conjugate vaccine in the Kingdom of Saudi Arabia (KSA). Vaccine 2012;30:G32–G36 [CrossRef][PubMed]
    [Google Scholar]
  100. Almazrou Y, Shibl AM, Alkhlaif R, Pirçon JY, Anis S et al. Epidemiology of invasive pneumococcal disease in Saudi Arabian children younger than 5 years of age. J Epidemiol Glob Health 2016;6:95–104 [CrossRef][PubMed]
    [Google Scholar]
  101. Al-Sheikh YA, Al-Sherikh YA, Gowda LK, Ali MMM, John J et al. Distribution of serotypes and antibiotic susceptibility patterns among invasive pneumococcal diseases in Saudi Arabia. Ann Lab Med 2014;34:210–215 [CrossRef][PubMed]
    [Google Scholar]
  102. Krishnappa LG, Marie MA, John J, Dabwan KH, Shashidhar PC. Serological and molecular capsular typing, antibiotic susceptibility of Streptococcus pneumoniae isolates from invasive and non-invasive infections. Acta Microbiol Immunol Hung 2014;61:173–179 [CrossRef][PubMed]
    [Google Scholar]
  103. Al-Tawfiq JA. Antibiotic resistance of pediatric isolates of Streptococcus pneumoniae in a Saudi Arabian hospital from 1999 to 2004. Med Sci Monit 2006;12:CR471–CR475[PubMed]
    [Google Scholar]
  104. Al-Dhaheri HS, Al-Tamimi MD, Khandekar RB, Khan M, Stone DU. Ocular pathogens and antibiotic sensitivity in bacterial keratitis isolates at King Khaled Eye Specialist Hospital, 2011 to 2014. Cornea 2016;35:789–794 [CrossRef][PubMed]
    [Google Scholar]
  105. Ilki A, Sağiroğlu P, Elgörmüş N, Söyletir G. [Trends in antibiotic susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae isolates: four years follow up]. Mikrobiyol Bul 2010;44:169–175[PubMed]
    [Google Scholar]
  106. Altinkanat Gelmez G, Soysal A, Kuzdan C, Karadağ B, Hasdemir U et al. [Serotype distribution and antibiotic susceptibilities of Streptococcus pneumoniae causing acute exacerbations and pneumonia in children with chronic respiratory diseases]. Mikrobiyol Bul 2013;47:684–692 [CrossRef][PubMed]
    [Google Scholar]
  107. Soyletir G, Altinkanat G, Gur D, Altun B, Tunger A et al. Results from the Survey of Antibiotic Resistance (SOAR) 2011-13 in Turkey. J Antimicrob Chemother 2016;71:i71–i83 [CrossRef][PubMed]
    [Google Scholar]
  108. Nasereddin A, Shtayeh I, Ramlawi A, Salman N, Salem I et al. Streptococcus pneumoniae from Palestinian nasopharyngeal carriers: serotype distribution and antimicrobial resistance. PLoS One 2013;8:e82047 [CrossRef][PubMed]
    [Google Scholar]
  109. Bokaeian M, Khazaei HA, Javadimehr M, Carriage N. Nasopharyngeal carriage, antibiotic resistance and serotype distribution of Streptococcus pneumoniae among healthy adolescents in Zahedan. Iran Red Crescent Med J 2011;13:328–333[PubMed]
    [Google Scholar]
  110. Dashti AS, Abdinia B, Karimi A. Nasopharyngeal carrier rate of Streptococcus pneumoniae in children: serotype distribution and antimicrobial resistance. Arch Iran Med 2012;15:500–503[PubMed]
    [Google Scholar]
  111. Ghazikalayeh HM, Moniri R, Moosavi SG, Rezaei M, Yasini M et al. Serotyping, antibiotic susceptibility and related risk factors aspects of nasopharyngeal carriage of Streptococcus pneumoniae in healthy school students. Iran J Public Health 2014;43:1284–1290[PubMed]
    [Google Scholar]
  112. Habibian S, Mehrabi-Tavana A, Ahmadi Z, Izadi M, Jonaidi N et al. Serotype distribution and antibiotics susceptibility pattern of Streptococcus pneumoniae in Iran. Iran Red Crescent Med J 2013;15:e8053 [CrossRef][PubMed]
    [Google Scholar]
  113. Abdinia B, Rezaee MA, Oskouie SA. Etiology and antimicrobial resistance patterns of acute bacterial meningitis in children: a 10-year referral hospital-based study in northwest Iran. Iran Red Crescent Med J 2014;16:e17616 [CrossRef][PubMed]
    [Google Scholar]
  114. Haghi Ashtiani MT, Sadeghian M, Nikmanesh B, Pourakbari B, Mahmoudi S et al. Antimicrobial susceptibility trends among Streptococcus pneumoniae over an 11-year period in an iranian referral children hospital. Iran J Microbiol 2014;6:382–386[PubMed]
    [Google Scholar]
  115. Mosleh MN, Gharibi M, Alikhani MY, Saidijam M, Vakhshiteh F. Antimicrobial susceptibility and analysis of macrolide resistance genes in Streptococcus pneumoniae isolated in Hamadan. Iran J Basic Med Sci 2014;17:595–599[PubMed]
    [Google Scholar]
  116. Al-Yaqoubi M, Elhag K. Susceptibilities of common bacterial isolates from Oman to old and new antibiotics. Oman Med J 2008;23:173–178[PubMed]
    [Google Scholar]
  117. Al-Kayali R, Khyami-Horani H, van der Linden M, Al-Lahham A. Antibiotic resistance patterns and risk factors of Streptococcus pneumoniae carriage among healthy Jordanian children. Eur Int J Sci Technol 2016;5:
    [Google Scholar]
  118. Al-Lahham A, van der Linden M. Streptococcus pneumoniae carriage, resistance and serotypes among Jordanian children from Wadi Al Seer District, Jordan. Int Arab J Antimicrob Agents 2015;4: [CrossRef]
    [Google Scholar]
  119. Johny M, Babelly M, Al-Obaid I, Al-Benwan K, Udo EE. Antimicrobial resistance in clinical isolates of Streptococcus pneumoniae in a tertiary hospital in Kuwait, 1997-2007: implications for empiric therapy. J Infect Public Health 2010;3:60–66 [CrossRef][PubMed]
    [Google Scholar]
  120. Mokaddas EM, Rotimi VO, Albert MJ. Increasing prevalence of antimicrobial resistance in Streptococcus pneumoniae in Kuwait: implications for therapy. Microb Drug Resist 2007;13:227–234 [CrossRef][PubMed]
    [Google Scholar]
  121. WHO Worldwide Country Situation Analysis: Response to Antimicrobial Resistance 2015
    [Google Scholar]
  122. Sibold C, Henrichsen J, König A, Martin C, Chalkley L et al. Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol Microbiol 1994;12:1013–1023 [CrossRef][PubMed]
    [Google Scholar]
  123. Grebe T, Hakenbeck R. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of β-lactam antibiotics. Antimicrob Agents Chemother 1996;40:829–834[PubMed]
    [Google Scholar]
  124. Liu EY, Chang JC, Lin JC, Chang FY, Fung CP. Important mutations contributing to high-level penicillin resistance in Taiwan19F-14, Taiwan23F-15, and Spain23F-1 of Streptococcus pneumoniae isolated from Taiwan. Microb Drug Resist 2016;22:646–654 [CrossRef][PubMed]
    [Google Scholar]
  125. Cafini F, del Campo R, Alou L, Sevillano D, Morosini MI et al. Alterations of the penicillin-binding proteins and murM alleles of clinical Streptococcus pneumoniae isolates with high-level resistance to amoxicillin in Spain. J Antimicrob Chemother 2006;57:224–229 [CrossRef][PubMed]
    [Google Scholar]
  126. Grebe T, Paik J, Hakenbeck R. A novel resistance mechanism against β-lactams in Streptococcus pneumoniae involves CpoA, a putative glycosyltransferase. J Bacteriol 1997;179:3342–3349 [CrossRef][PubMed]
    [Google Scholar]
  127. Martin C, Sibold C, Hakenbeck R. Relatedness of penicillin-binding protein 1a genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J 1992;11:3831–3836[PubMed]
    [Google Scholar]
  128. Coffey TJ, Daniels M, Mcdougal LK, Dowson CG, Tenover FC et al. Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob Agents Chemother 1995;39:1306–1313 [CrossRef][PubMed]
    [Google Scholar]
  129. Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 2008;32:361–385 [CrossRef][PubMed]
    [Google Scholar]
  130. Nagai K, Davies TA, Jacobs MR, Appelbaum PC. Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob Agents Chemother 2002;46:1273–1280 [CrossRef][PubMed]
    [Google Scholar]
  131. Guenzi E, Gasc AM, Sicard MA, Hakenbeck R. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 1994;12:505–515 [CrossRef][PubMed]
    [Google Scholar]
  132. Senok A, Al-Zarouni M, Al-Najjar J, Nublusi A, Panigrahi D. Antimicrobial resistance among Streptococcus pneumoniae and Haemophilus influenzae isolates in the United Arab Emirates: 2004-2006. J Infect Dev Ctries 2007;1:296–302[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000503
Loading
/content/journal/jmm/10.1099/jmm.0.000503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error