1887

Abstract

Purpose. Catheter-related bloodstream infections (CRBSIs) are among the most common hospital-acquired infections. We aimed to survey methicillin resistance, biofilm production and susceptibility to vancomycin, linezolid and other antibiotics for staphylococci isolated from CRBSIs.

Methodology. Fifty-eight isolates [20 S . aureus and 38 coagulase-negative staphylococci (CoNS; 20 Staphylococcus epidermidis, nine Staphylococcus haemolyticus, three Staphylococcus schleiferi, two Staphylococcus warneri and four Staphylococcus lugdunensis)] were tested for methicillin resistance by cefoxitin disk diffusion and detection of the mecA gene by PCR; biofilm-forming ability using Congo red agar and tissue culture plate methods; susceptibility to ciprofloxacin, clindamycin, cotrimoxazole, erythromycin, gentamicin, linezolid, rifampicin and tetracycline; and MIC determination for vancomycin.

Results/Key findings. Cefoxitin resistance was detected among 40 % (8/20) S . aureus isolates, 70 % (14/20) S . epidermidis isolates and 16.7 % (3/18) of other CoNS, although the mecA gene was detected in 45 % (9/20) S . aureus isolates, 35 % (7/20) S . epidermidis isolates and 16.7 % (3/18) of other CoNS. Biofilm-forming ability ranged from 45 to 75 %. Methicillin-resistant S. aureus and other CoNS were considered to be more virulent than methicillin-resistant S. epidermidis due to the higher biofilm forming abilities of the former. All tested isolates exhibited 100 % sensitivity to vancomycin and linezolid, irrespective of their methicillin resistance or biofilm-forming ability. Rifampicin showed overall sensitivity of 75.9 %. Varying degrees of multi-resistance were found for the other antibiotics.

Conclusion. Vancomycin, linezolid and rifampicin could be used effectively against methicillin-resistant staphylococci isolated from CRBSIs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000490
2017-06-09
2019-12-10
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/6/744.html?itemId=/content/journal/jmm/10.1099/jmm.0.000490&mimeType=html&fmt=ahah

References

  1. Gahlot R, Nigam C, Kumar V, Yadav G, Anupurba S. Catheter-related bloodstream infections. Int J Crit Illn Inj Sci 2014;4:161–167 [CrossRef][PubMed]
    [Google Scholar]
  2. Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 2006;81:1159–1171 [CrossRef][PubMed]
    [Google Scholar]
  3. Shah H, Bosch W, Thompson KM, Hellinger WC. Intravascular catheter-related bloodstream infection. Neurohospitalist 2013;3:144–151 [CrossRef][PubMed]
    [Google Scholar]
  4. Karthaus M, Doellmann T, Klimasch T, Krauter J, Heil G et al. Central venous catheter infections in patients with acute leukemia. Chemotherapy 2002;48:154–157 [CrossRef][PubMed]
    [Google Scholar]
  5. Schönenberger M, Forster C, Siegemund M, Woodtli S, Widmer AF et al. Catheter related blood stream infections in critically ill patients with continuous haemo(dia)filtration and temporary non-tunnelled vascular access. Swiss Med Wkly 2011;141:w13294 [CrossRef][PubMed]
    [Google Scholar]
  6. Yalaz M, Altun-Köroğlu O, Ulusoy B, Yildiz B, Akisu M et al. Evaluation of device-associated infections in a neonatal intensive care unit. Turk J Pediatr 2012;54:128–135[PubMed]
    [Google Scholar]
  7. Jain A, Agarwal A, Verma RK, Awasthi S, Singh KP. Intravenous device associated blood stream staphylococcal infection in paediatric patients. Indian J Med Res 2011;134:193–199[PubMed]
    [Google Scholar]
  8. Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol 2008;322:207–228[PubMed]
    [Google Scholar]
  9. Nielsen XC, Chen M, Hellesøe AM, Jeppesen PB, Gyldenlykke J et al. Etiology and epidemiology of catheter related bloodstream infections in patients receiving home parenteral nutrition in a gastromedical center at a tertiary hospital in Denmark. Open Microbiol J 2012;6:98–101 [CrossRef][PubMed]
    [Google Scholar]
  10. Parameswaran R, Sherchan JB, Varma D M, Mukhopadhyay C, Vidyasagar S. Intravascular catheter-related infections in an Indian tertiary care hospital. J Infect Dev Ctries 2011;5:452–458 [CrossRef][PubMed]
    [Google Scholar]
  11. Seifert H, Cornely O, Seggewiss K, Decker M, Stefanik D et al. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J Clin Microbiol 2003;41:118–123 [CrossRef][PubMed]
    [Google Scholar]
  12. Almuneef MA, Memish ZA, Balkhy HH, Hijazi O, Cunningham G et al. Rate, risk factors and outcomes of catheter-related bloodstream infection in a paediatric intensive care unit in Saudi Arabia. J Hosp Infect 2006;62:207–213 [CrossRef][PubMed]
    [Google Scholar]
  13. Seral C, Sáenz Y, Algarate S, Duran E, Luque P et al. Nosocomial outbreak of methicillin- and linezolid-resistant Staphylococcus epidermidis associated with catheter-related infections in intensive care unit patients. Int J Med Microbiol 2011;301:354–358 [CrossRef][PubMed]
    [Google Scholar]
  14. Ho CM, Li CY, Ho MW, Lin CY, Liu SH et al. High rate of qacA- and qacB-positive methicillin-resistant Staphylococcus aureus isolates from chlorhexidine-impregnated catheter-related bloodstream infections. Antimicrob Agents Chemother 2012;56:5693–5697 [CrossRef][PubMed]
    [Google Scholar]
  15. Castagnola E, Bandettini R, Lorenzi I, Caviglia I, Macrina G et al. Catheter-related bacteraemia caused by methicillin-resistant coagulase negative staphylococci with elevated minimal inhibitory concentration for vancomycin. Pediatr Infect Dis J 2010;29:1047–1048 [CrossRef][PubMed]
    [Google Scholar]
  16. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000;44:1549–1555 [CrossRef][PubMed]
    [Google Scholar]
  17. Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 2002;85:57–72 [CrossRef][PubMed]
    [Google Scholar]
  18. Bayındır Bilman F, Can F, Kaya M, Yazıcı AC. [Investigation of biofilm-associated antibiotic susceptibilities of methicillin-resistant staphylococci isolated from catheter-related nosocomial infections]. Mikrobiyol Bul 2013;47:401–416 [CrossRef][PubMed]
    [Google Scholar]
  19. Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 2013;68:4–11 [CrossRef][PubMed]
    [Google Scholar]
  20. Aldea-Mansilla C, García de Viedma D, Cercenado E, Martín-Rabadán P, Marín M et al. Comparison of phenotypic with genotypic procedures for confirmation of coagulase-negative Staphylococcus catheter-related bloodstream infections. J Clin Microbiol 2006;44:3529–3532 [CrossRef][PubMed]
    [Google Scholar]
  21. CDC Guidelines for the prevention of intravascular catheter-related infections. MMWR 2002;51:
    [Google Scholar]
  22. Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 1977;;296:1305–1309 [CrossRef][PubMed]
    [Google Scholar]
  23. Kloos WE, Bannerman TL. Staphylococcus and Micrococcus. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. (editors) Manual of Clinical Microbiology, 7th ed. Washington, DC: American Society for Microbiology; 1999; pp.264–282
    [Google Scholar]
  24. CLSI Performance Standards for Antimicrobial Susceptibility Testing (M100-S23)vol. 33 No. 1 Wayne, PA: Clinical and Laboratory Standards Institute; 2013
    [Google Scholar]
  25. Pérez-Roth E, Claverie-Martín F, Villar J, Méndez-Alvarez S. Multiplex PCR for simultaneous identification of Staphylococcus aureus and detection of methicillin and mupirocin resistance. J Clin Microbiol 2001;39:4037–4041 [CrossRef][PubMed]
    [Google Scholar]
  26. Anand KB, Agrawal P, Kumar S, Kapila K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J Med Microbiol 2009;27:27–29[PubMed]
    [Google Scholar]
  27. Geha DJ, Uhl JR, Gustaferro CA, Persing DH. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol 1994;32:1768–1772[PubMed]
    [Google Scholar]
  28. CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. CLSI (M07-A9)vol. 32 No. 2 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  29. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985;22:996–1006[PubMed]
    [Google Scholar]
  30. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T et al. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 2006;24:25–29 [CrossRef][PubMed]
    [Google Scholar]
  31. Oliveira A, Cunha Mde L. Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Res Notes 2010;3:260 [CrossRef][PubMed]
    [Google Scholar]
  32. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989;42:872–874 [CrossRef][PubMed]
    [Google Scholar]
  33. Uçkay I, Pittet D, Vaudaux P, Sax H, Lew D et al. Foreign body infections due to Staphylococcus epidermidis. Ann Med 2009;41:109–119 [CrossRef][PubMed]
    [Google Scholar]
  34. Subha Rao SD, Joseph MP, Lavi R, Macaden R. Infections related to vascular catheters in a pediatric intensive care unit. Indian Pediatr 2005;42:667–672[PubMed]
    [Google Scholar]
  35. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004;39:309–317 [CrossRef][PubMed]
    [Google Scholar]
  36. Lata C, Girard L, Parkins M, James MT. Catheter-related bloodstream infection in end-stage kidney disease: a Canadian narrative review. Can J Kidney Health Dis 2016;3:24 [CrossRef][PubMed]
    [Google Scholar]
  37. Zboromyrska Y, De La Calle C, Soto M, Sampietro-Colom L, Soriano A et al. Rapid diagnosis of staphylococcal catheter-related bacteraemia in direct blood samples by real-time PCR. PLoS One 2016;11:e0161684 [CrossRef][PubMed]
    [Google Scholar]
  38. Tao F, Jiang R, Chen Y, Chen R. Risk factors for early onset of catheter-related bloodstream infection in an intensive care unit in China: a retrospective study. Med Sci Monit 2015;19:550–556
    [Google Scholar]
  39. Berger-Bächi B, Tschierske M. Role of fem factors in methicillin resistance. Drug Resist Updat 1998;1:325–335 [CrossRef][PubMed]
    [Google Scholar]
  40. Jorgensen JH. Mechanisms of methicillin resistance in Staphylococcus aureus and methods for laboratory detection. Infect Control Hosp Epidemiol 1991;12:14–19 [CrossRef][PubMed]
    [Google Scholar]
  41. Singhai M, Malik A, Shahid M, Malik MA, Goyal R. A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect Dis 2012;4:193–198 [CrossRef][PubMed]
    [Google Scholar]
  42. Kozitskaya S, Cho SH, Dietrich K, Marre R, Naber K et al. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 2004;72:1210–1215 [CrossRef][PubMed]
    [Google Scholar]
  43. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  44. Khanna V, Mukhopadhayay C, K E V, Verma M, Dabke P. Evaluation of central venous catheter associated blood stream infections: a microbiological observational study. J Pathog 2013;2013:936864 [CrossRef][PubMed]
    [Google Scholar]
  45. Quiles-Melero I, Gómez-Gil R, Romero-Gómez MP, Sánchez-Díaz AM, de Pablos M et al. Mechanisms of linezolid resistance among Staphylococci in a tertiary hospital. J Clin Microbiol 2013;51:998–1001 [CrossRef][PubMed]
    [Google Scholar]
  46. Watanabe Y, Cui L, Katayama Y, Kozue K, Hiramatsu K. Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J Clin Microbiol 2011;49:2680–2684 [CrossRef][PubMed]
    [Google Scholar]
  47. Mataraci E, Dosler S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2012;56:6366–6371 [CrossRef][PubMed]
    [Google Scholar]
  48. de Oliveira A, Cataneli Pereira V, Pinheiro L, Moraes Riboli DF, Benini Martins K et al. Antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and Coagulase-Negative staphylococci. Int J Mol Sci 2016;17:1423 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000490
Loading
/content/journal/jmm/10.1099/jmm.0.000490
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error